Few-layer violet phosphorus (VP) shows excellent potential in optoelectronic applications due to its unique in-plane anisotropy and high mobility. However, the poor air stability of VP severely limits its practical applications. This article reports highly air-stable VP obtained by a two-step nitrogen plasma treatment where the nitrogen volume flow rate is controlled to coordinate physical etching and chemical doping.
View Article and Find Full Text PDFIdeal solid electrolytes for lithium (Li) metal batteries should conduct Li rapidly with low activation energy, exhibit a high Li transference number, form a stable interface with the Li anode, and be electrochemically stable. However, the lack of solid electrolytes that meet all of these criteria has remained a considerable bottleneck in the advancement of lithium metal batteries. In this study, we present a design strategy combining all of those requirements in a balanced manner to realize quasi-solid-state electrolyte-enabled Li metal batteries (LMBs).
View Article and Find Full Text PDFLithium (Li)-metal batteries (LMBs) possess the highest theoretical energy density among current battery designs and thus have enormous potential for use in energy storage. However, the development of LMBs has been severely hindered by safety concerns arising from dendrite growth and unstable interphases on the Li anode. Covalent organic frameworks (COFs) incorporating either redox-active or anionic moieties on their backbones have high Li-ion (Li) conductivities and mechanical/chemical stabilities, so are promising for solid electrolyte interphases (SEIs) in LMBs.
View Article and Find Full Text PDFBackground: Peripheral arterial disease (PAD) has become one of the leading causes of disa-bility and death in diabetic patients. Restoring blood supply to the hindlimbs, especially by promoting arteriogenesis, is currently the most effective strategy, in which endothelial cells play an important role. Tongxinluo (TXL) has been widely used for the treatment of cardio-cerebrovascular diseases and extended for diabetes-related vascular disease.
View Article and Find Full Text PDFMonolayer blue phosphorous has a large band gap of 2.76 eV but counterintuitively the most stable bilayer blue phosphorous has a negative band gap of -0.51 eV.
View Article and Find Full Text PDFInterlayer interactions play important roles in manipulating the electronic properties of layered semiconductors. One common mechanism is that the valence band maximum (VBM) and the conduction band minimum (CBM) in one layer couple to the VBM and CBM in another layer, respectively, resulting in the decrease of the band gap from the monolayer to the bilayer. Here we report an unusual interlayer coupling mechanism in layered Cu-based ternary chalcogenides CuMCh (M = Sb, Bi; Ch = S, Se) that the CBM in one layer strongly couples to the VBM in the other layer, leading to the band gap increase from the monolayer to the bilayer.
View Article and Find Full Text PDF