Aquaporins (AQPs) are natural proteins that can selectively transport water across cell membranes. Heterogeneous H-bonding of water with the inner wall of the pores of AQPs is of maximal importance regarding the optimal stabilization of water clusters within channels, leading to selective pore flow water transport against ions. To gain deeper insight into the water permeation mechanisms, simpler artificial water channels (AWCs) have been developed.
View Article and Find Full Text PDFArtificial water channels (AWCs) have been extensively explored to mimic natural proteins, which enables to effectively transport water while blocking ions. As one of the first AWCs, self-assembled I-quartets (HCx) have showcased high water-permselectivity that can be enhanced by improving their distribution and stability within membrane. The use of long alkyl chains (n>8) is constrained by their low solubility and aggregation.
View Article and Find Full Text PDFMechanical forces have been shown to influence cellular decisions to grow, die, or differentiate, through largely mysterious mechanisms. Separately, changes in resting membrane potential have been observed in development, differentiation, regeneration, and cancer. We now demonstrate that membrane potential is the central mediator of cellular response to mechanical pressure.
View Article and Find Full Text PDFNature creates aquaporins to effectively transport water, rejecting all ions including protons. Aquaporins (AQPs) has brought inspiration for the development of Artificial Water Channels (AWCs). Imidazole-quartet (I-quartet) was the first AWC that enabled to self-assemble a tubular backbone for rapid water and proton permeation with total ion rejection.
View Article and Find Full Text PDFThe growing applications of therapeutic nucleic acids requires the concomitant development of vectors that are optimized to complex one type of nucleic acid, forming nanoparticles suitable for further trafficking and delivery. While fine-tuning a vector by molecular engineering to obtain a particular nanoscale organization at the nanoparticle level can be a challenging endeavor, we turned the situation around and instead screened the complexation preferences of dynamic constitutional frameworks toward different types of DNAs. Dynamic constitutional frameworks (DCF) are recently-identified vectors by our group that can be prepared in a versatile manner through dynamic covalent chemistry.
View Article and Find Full Text PDFThe use of nucleic acids as templates, which can trigger the self-assembly of their own vectors represent an emerging, simple and versatile, approach toward the self-fabrication of tailored nucleic acids delivery vectors. However, the structure-activity relationships governing this complex templated self-assembly process that accompanies the complexation of nucleic acids remains poorly understood. Herein, the class of arginine-rich dynamic covalent polymers (DCPs) composed of different monomers varying the number and position of arginines were studied.
View Article and Find Full Text PDFScars are common and intractable consequences after scalded wound healing, while monotherapy of epidermal growth factors does not solve this problem. Maintaining the stability of epidermal growth factors and promoting scarless healing of wounds is paramount. In this study, engineering cellular nanovesicles overexpressing PD-L1 proteins, biomimetic nanocarriers with immunosuppressive efficacy, were successfully prepared to encapsulate epidermal growth factors for maintaining its bioactivity.
View Article and Find Full Text PDFPsammochloa villosa is a desert plant growing in Northwest China with considerable resistance to abiotic stress, including drought, cold, and salt. To facilitate future studies of stress resistance in Psammochloa villosa, we sought to establish a suite of reference (or housekeeping) genes for utilization within future gene expression studies. Specifically, we selected nine candidate genes based on prior studies and new transcriptomic data for P.
View Article and Find Full Text PDF