Publications by authors named "Dan Zenkert"

Multifunctional structural materials are capable of reducing system level mass and increasing efficiency in load-carrying structures. Materials that are capable of harvesting energy from the surrounding environment are advantageous for autonomous electrically powered systems. However, most energy harvesting materials are non-structural and add parasitic mass, reducing structural efficiency.

View Article and Find Full Text PDF

Structures that are capable of changing shape can increase efficiency in many applications, but are often heavy and maintenance intensive. To reduce the mass and mechanical complexity solid-state morphing materials are desirable but are typically nonstructural and problematic to control. Here we present an electrically controlled solid-state morphing composite material that is lightweight and has a stiffness higher than aluminum.

View Article and Find Full Text PDF

The mechanical and electrochemical properties are coupled through a piezo-electrochemical effect in Li-intercalated carbon fibers. It is demonstrated that this piezo-electrochemical effect makes it possible to harvest electrical energy from mechanical work. Continuous polyacrylonitrile-based carbon fibers that can work both as electrodes for Li-ion batteries and structural reinforcement for composites materials are used in this study.

View Article and Find Full Text PDF