Ablation of the mouse genes for Onecut-2 and Onecut-3 was reported previously, but characterization of the resulting knockout mice was focused on in utero development, principally embryonic development of liver and pancreas. Here we examined postnatal development of these Onecut knockout mice, especially the critical period before weaning. Onecut-3 knockout mice develop normally during this period.
View Article and Find Full Text PDFAn intestine-specific gene regulatory region was previously identified near the second exon of the human adenosine deaminase (ADA) gene. In mammalian intestine, ADA is expressed at high levels only along the villi of the duodenal epithelium, principally if not exclusively in enterocytes. Within the ADA intestinal regulatory region, a potent duodenum-specific enhancer was identified that controls this pattern of expression.
View Article and Find Full Text PDFJ Mol Histol
February 2005
The ability of the GATA family of factors to interact with numerous other factors, co-factors, and repressors suggests that they may play key roles in tissues and cells where they are expressed. Adult mouse small intestine has been shown to express GATA-4, GATA-5, and GATA-6, where they have been implicated in the activation of a number of intestinal genes. Determination of which GATA factor(s) are involved in a specific function in tissues expressing multiple family members has proven difficult.
View Article and Find Full Text PDFIn mammalian intestine, adenosine deaminase (ADA) is expressed at high levels only along the villi of the duodenal epithelium. A duodenum-specific enhancer identified in the second intron of the human ADA gene controls this pattern of expression. This enhancer faithfully recapitulates this expression pattern in transgenic mice, when included in CAT reporter gene constructions.
View Article and Find Full Text PDFAm J Physiol Gastrointest Liver Physiol
June 2003
The purine metabolic gene adenosine deaminase (ADA) is expressed at high levels in a well-defined spatiotemporal pattern in the villous epithelium of proximal small intestine. A duodenum-specific enhancer module responsible for this expression pattern has been identified in the second intron of the human ADA gene. It has previously been shown that binding of the factor PDX-1 is essential for function of this enhancer.
View Article and Find Full Text PDFBackground & Aims: A genome-level understanding of the molecular basis of segmental gene expression along the anterior-posterior (A-P) axis of the mammalian gastrointestinal (GI) tract is lacking. We hypothesized that functional patterning along the A-P axis of the GI tract could be defined at the molecular level by analyzing expression profiles of large numbers of genes.
Methods: Incyte GEM1 microarrays containing 8638 complementary DNAs (cDNAs) were used to define expression profiles in adult mouse stomach, duodenum, jejunum, ileum, cecum, proximal colon, and distal colon.