Our understanding of bird song, a model system for animal communication and the neurobiology of learning, depends critically on making reliable, validated comparisons between the complex multidimensional syllables that are used in songs. However, most assessments of song similarity are based on human inspection of spectrograms, or computational methods developed from human intuitions. Using a novel automated operant conditioning system, we collected a large corpus of zebra finches' (Taeniopygia guttata) decisions about song syllable similarity.
View Article and Find Full Text PDFBioacoustics and artificial intelligence facilitate ecological studies of animal populations.
View Article and Find Full Text PDFThe ongoing biodiversity crisis, driven by factors such as land-use change and global warming, emphasizes the need for effective ecological monitoring methods. Acoustic monitoring of biodiversity has emerged as an important monitoring tool. Detecting human voices in soundscape monitoring projects is useful both for analyzing human disturbance and for privacy filtering.
View Article and Find Full Text PDFInsect population numbers and biodiversity have been rapidly declining with time, and monitoring these trends has become increasingly important for conservation measures to be effectively implemented. But monitoring methods are often invasive, time and resource intense, and prone to various biases. Many insect species produce characteristic sounds that can easily be detected and recorded without large cost or effort.
View Article and Find Full Text PDFAnimal vocalisations and natural soundscapes are fascinating objects of study, and contain valuable evidence about animal behaviours, populations and ecosystems. They are studied in bioacoustics and ecoacoustics, with signal processing and analysis an important component. Computational bioacoustics has accelerated in recent decades due to the growth of affordable digital sound recording devices, and to huge progress in informatics such as big data, signal processing and machine learning.
View Article and Find Full Text PDFBat-pollinated flowers have to attract their pollinators in absence of light and therefore some species developed specialized echoic floral parts. These parts are usually concave shaped and act like acoustic retroreflectors making the flowers acoustically conspicuous to the bats. Acoustic plant specializations only have been described for two bat-pollinated species in the Neotropics and one other bat-dependent plant in South East Asia.
View Article and Find Full Text PDFMany people living in urban environments nowadays are overexposed to noise, which results in adverse effects on their health. Thus, urban sound monitoring has emerged as a powerful tool that might enable public administrations to automatically identify and quantify noise pollution. Therefore, identifying multiple and simultaneous acoustic sources in these environments in a reliable and cost-effective way has emerged as a hot research topic.
View Article and Find Full Text PDFEvaluating sound similarity is a fundamental building block in acoustic perception and computational analysis. Traditional data-driven analyses of perceptual similarity are based on heuristics or simplified linear models, and are thus limited. Deep learning embeddings, often using triplet networks, have been useful in many fields.
View Article and Find Full Text PDFSolar photovoltaic (PV) is an increasingly significant fraction of electricity generation. Efficient management, and innovations such as short-term forecasting and machine vision, demand high-resolution geographic datasets of PV installations. However, official and public sources have notable deficiencies: spatial imprecision, gaps in coverage and lack of crucial meta data, especially for small-scale solar panel installations.
View Article and Find Full Text PDFBackground: Since the declaration of the 10th Ebola Virus Disease (EVD) outbreak in DRC on 1st Aug 2018, several neighboring countries have been developing and implementing preparedness efforts to prevent EVD cross-border transmission to enable timely detection, investigation, and response in the event of a confirmed EVD outbreak in the country. We describe Uganda's experience in EVD preparedness.
Results: On 4 August 2018, the Uganda Ministry of Health (MoH) activated the Public Health Emergency Operations Centre (PHEOC) and the National Task Force (NTF) for public health emergencies to plan, guide, and coordinate EVD preparedness in the country.
Recent advances in birdsong detection and classification have approached a limit due to the lack of fully annotated recordings. In this paper, we present NIPS4Bplus, the first richly annotated birdsong audio dataset, that is comprised of recordings containing bird vocalisations along with their active species tags plus the temporal annotations acquired for them. Statistical information about the recordings, their species specific tags and their temporal annotations are presented along with example uses.
View Article and Find Full Text PDFMany animals emit vocal sounds which, independently from the sounds' function, contain some individually distinctive signature. Thus the automatic recognition of individuals by sound is a potentially powerful tool for zoology and ecology research and practical monitoring. Here, we present a general automatic identification method that can work across multiple animal species with various levels of complexity in their communication systems.
View Article and Find Full Text PDFJ R Soc Interface
June 2016
Animals in groups often exchange calls, in patterns whose temporal structure may be influenced by contextual factors such as physical location and the social network structure of the group. We introduce a model-based analysis for temporal patterns of animal call timing, originally developed for networks of firing neurons. This has advantages over cross-correlation analysis in that it can correctly handle common-cause confounds and provides a generative model of call patterns with explicit parameters for the influences between individuals.
View Article and Find Full Text PDFAutomatic species classification of birds from their sound is a computational tool of increasing importance in ecology, conservation monitoring and vocal communication studies. To make classification useful in practice, it is crucial to improve its accuracy while ensuring that it can run at big data scales. Many approaches use acoustic measures based on spectrogram-type data, such as the Mel-frequency cepstral coefficient (MFCC) features which represent a manually-designed summary of spectral information.
View Article and Find Full Text PDF