Publications by authors named "Dan Schonfeld"

Transcranial ultrasound imaging is a popular method to study cerebral functionality and diagnose brain injuries. However, the detected ultrasound signal is greatly distorted due to the aberration caused by the skull bone. The aberration mechanism mainly depends on thickness and porosity, two important skull physical characteristics.

View Article and Find Full Text PDF

Purpose: Persistent sustained attention deficit (SAD) after continuous positive airway pressure (CPAP) treatment is a source of quality of life and occupational impairment in obstructive sleep apnea (OSA). However, persistent SAD is difficult to predict in patients initiated on CPAP treatment. We performed secondary analyses of brain magnetic resonance (MR) images in treated OSA participants, using deep learning, to predict SAD.

View Article and Find Full Text PDF

Neural activity coordinated across different scales from neuronal circuits to large-scale brain networks gives rise to complex cognitive functions. Bridging the gap between micro- and macroscale processes, we present a novel framework based on the maximum entropy model to infer a hybrid resting-state structural connectome, representing functional interactions constrained by structural connectivity. We demonstrate that the structurally informed network outperforms the unconstrained model in simulating brain dynamics, wherein by constraining the inference model with the network structure we may improve the estimation of pairwise BOLD signal interactions.

View Article and Find Full Text PDF

The mutagenic chain reaction (MCR) is a genetic tool to use a CRISPR-Cas construct to introduce a homing endonuclease, allowing gene drive to influence whole populations in a minimal number of generations (Esvelt et al., 2014; Gantz and Bier, 2015; Gantz and Bier, 2016). The question arises: if an active genetic terror event is released into a population, could we prevent the total spread of the undesired allele (Gantz, et al.

View Article and Find Full Text PDF

Synaptic dysfunction is hypothesized to be one of the earliest brain changes in Alzheimer's disease, leading to "hyperexcitability" in neuronal circuits. In this study, we evaluated a novel hyperexcitation indicator (HI) for each brain region using a hybrid resting-state structural connectome to probe connectome-level excitation-inhibition balance in cognitively intact middle-aged apolipoprotein E (APOE) ε4 carriers with noncarriers (16 male/22 female in each group). Regression with three-way interactions (sex, age, and APOE-ε4 carrier status) to assess the effect of APOE-ε4 on excitation-inhibition balance within each sex and across an age range of 40-60 years yielded a significant shift toward higher HI in female carriers compared with noncarriers (beginning at 50 years).

View Article and Find Full Text PDF

Study Objectives: Nocturnal blood pressure (BP) profile shows characteristic abnormalities in OSA, namely acute postapnea BP surges and nondipping BP. These abnormal BP profiles provide prognostic clues indicating increased cardiovascular disease risk. We developed a deep neural network model to perform computerized analysis of polysomnography data and predict nocturnal BP profile.

View Article and Find Full Text PDF

In the past decade, great efforts have been made to extend linear discriminant analysis for higher-order data classification, generally referred to as multilinear discriminant analysis (MDA). Existing examples include general tensor discriminant analysis (GTDA) and discriminant analysis with tensor representation (DATER). Both the two methods attempt to resolve the problem of tensor mode dependency by iterative approximation.

View Article and Find Full Text PDF

Compressive sensing (CS) has triggered an enormous research activity since its first appearance. CS exploits the signal's sparsity or compressibility in a particular domain and integrates data compression and acquisition, thus allowing exact reconstruction through relatively few nonadaptive linear measurements. While conventional CS theory relies on data representation in the form of vectors, many data types in various applications, such as color imaging, video sequences, and multisensor networks, are intrinsically represented by higher order tensors.

View Article and Find Full Text PDF

In this paper, we develop a comprehensive framework for optimal perturbation control of dynamic networks. The aim of the perturbation is to drive the network away from an undesirable steady-state distribution and to force it to converge towards a desired steady-state distribution. The proposed framework does not make any assumptions about the topology of the initial network, and is thus applicable to general-topology networks.

View Article and Find Full Text PDF

In this article, we present path length associated community estimation (PLACE), a comprehensive framework for studying node-level community structure. Instead of the well-known Q modularity metric, PLACE utilizes a novel metric, Ψ(PL), which measures the difference between intercommunity versus intracommunity path lengths. We compared community structures in human healthy brain networks generated using these two metrics and argued that Ψ(PL) may have theoretical advantages.

View Article and Find Full Text PDF

We propose a framework for quantifying node-level community structures between groups using anatomical brain networks derived from DTI-tractography. To construct communities, we computed hierarchical binary trees by maximizing two metrics: the well-known modularity metric (Q), and a novel metric that measures the difference between inter-community and intra-community path lengths. Changes in community structures on the nodal level were assessed between generated trees and a statistical framework was developed to detect local differences between two groups of community structures.

View Article and Find Full Text PDF

We study the robustness of the inverse perturbation solution in discrete-time systems modeled by homogeneous Markov chains. We cast the optimal inverse perturbation control as a strictly convex optimization problem, which admits a unique global solution. We show that the optimal inverse perturbation control is robust to estimation errors in the original network.

View Article and Find Full Text PDF

In this paper, we present a comprehensive analysis of self-dual and m-idempotent operators. We refer to an operator as m-idempotent if it converges after m iterations. We focus on an important special case of the general theory of lattice morphology: spatially variant morphology, which captures the geometrical interpretation of spatially variant structuring elements.

View Article and Find Full Text PDF

In this paper, we develop a novel solution for particle filtering on general graphs. We provide an exact solution for particle filtering on directed cycle-free graphs. The proposed approach relies on a partial-order relation in an antichain decomposition that forms a high-order Markov chain over the partitioned graph.

View Article and Find Full Text PDF

In this paper, we propose a communication model of evolution and investigate its information-theoretic bounds. The process of evolution is modeled as the retransmission of information over a protein communication channel, where the transmitted message is the organism's proteome encoded in the DNA. We compute the capacity and the rate distortion functions of the protein communication system for the three domains of life: Archaea, Bacteria, and Eukaryotes.

View Article and Find Full Text PDF

Motivation: Analysis and intervention in the dynamics of gene regulatory networks is at the heart of emerging efforts in the development of modern treatment of numerous ailments including cancer. The ultimate goal is to develop methods to intervene in the function of living organisms in order to drive cells away from a malignant state into a benign form. A serious limitation of much of the previous work in cancer network analysis is the use of external control, which requires intervention at each time step, for an indefinite time interval.

View Article and Find Full Text PDF

A method is introduced to track the object's motion and estimate its pose directly from 2-D image sequences. Scale-invariant feature transform (SIFT) is used to extract corresponding feature points from image sequences. We demonstrate that pose estimation from the corresponding feature points can be formed as a solution to Sylvester's equation.

View Article and Find Full Text PDF

In this paper, we present a novel method for virtual focus and object depth estimation from defocused video captured by a moving camera. We use the term virtual focus to refer to a new approach for producing in-focus image sequences by processing blurred videos captured by out-of-focus cameras. Our method relies on the concept of Depth-from-Defocus (DFD) for virtual focus estimation.

View Article and Find Full Text PDF

In this paper, we propose an attraction-repulsion expectation-maximization (AREM) algorithm for image reconstruction and sensor field estimation. We rely on a new method for density estimation to address the problems of image reconstruction from limited samples and sensor field estimation from randomly scattered sensors. Density estimation methods often suffer from undesirable phenomena such as over-fitting and over-smoothing.

View Article and Find Full Text PDF

In this paper, we propose a novel solution to an arbitrary noncausal, multidimensional hidden Markov model (HMM) for image and video classification. First, we show that the noncausal model can be solved by splitting it into multiple causal HMMs and simultaneously solving each causal HMM using a fully synchronous distributed computing framework, therefore referred to as distributed HMMs. Next we present an approximate solution to the multiple causal HMMs that is based on an alternating updating scheme and assumes a realistic sequential computing framework.

View Article and Find Full Text PDF

Background: Over the past decade, many investigators have used sophisticated time series tools for the analysis of genomic sequences. Specifically, the correlation of the nucleotide chain has been studied by examining the properties of the power spectrum. The main limitation of the power spectrum is that it is restricted to stationary time series.

View Article and Find Full Text PDF
Robust control-based object tracking.

IEEE Trans Image Process

September 2008

This correspondence presents a video tracking framework using control-based observer design. It unifies several kernel-based approaches into a consistent theoretical framework by modeling tracking as a recursive inverse problem. The framework relies on observability theory to handle the "singularity" problem and provides explicit criteria for kernel design and dynamics evaluation.

View Article and Find Full Text PDF

In this paper, we propose a maximum-entropy expectation-maximization (MEEM) algorithm. We use the proposed algorithm for density estimation. The maximum-entropy constraint is imposed for smoothness of the estimated density function.

View Article and Find Full Text PDF