Background: B-cell maturation antigen is a pivotal therapeutic target for multiple myeloma (MM). Membrane-bound BCMA can be cleaved by γ-secretase and shed as soluble BCMA (sBCMA). sBCMA can act as a neutralizing sink to compete with drug, as well as serve as a diagnostic/prognostic biomarker for MM.
View Article and Find Full Text PDFThe development of therapeutic fusion protein drugs is often impeded by the unintended consequences that occur from fusing together domains from independent naturally occurring proteins, consequences such as altered biodistribution, tissue uptake, or rapid clearance and potential immunogenicity. For therapeutic fusion proteins containing globular domains, we hypothesized that aberrant in vivo behavior could be related to low kinetic stability of these domains leading to local unfolding and susceptibility to partial proteolysis and/or salvage and uptake. Herein we describe an assay to measure kinetic stability of therapeutic fusion proteins by way of their sensitivity to the protease thermolysin.
View Article and Find Full Text PDFBoth capillary electrophoresis (CE) and mass spectrometry (MS) technologies are powerful analytical tools that have been used extensively in the characterization of biologics in the biopharmaceutical industry. The direct coupling of CE with MS is an attractive approach, in that the high separation capability of CE and the ultrasensitive detection and accurate identification performance of MS can be combined to provide a powerful system for the analysis of complex analytes. In this chapter, we discuss the detailed procedure of carrying out CE-MS analysis using a nano sheath-flow interface and its applications including intact mass analysis of monoclonal antibodies and fusion proteins, and a biotransformation study of two Fc-FGF21 molecules in a single-dose pharmacokinetic mice study.
View Article and Find Full Text PDFBispecific T-cell engager (BiTE) molecules are biologic T cell-directing immunotherapies. Blinatumomab is approved for treatment of B-cell malignancies, but BiTE molecule development in solid tumors has been more challenging. Here, we employed intravital imaging to characterize exposure and pharmacodynamic response of an anti-muCD3/anti-huEGFRvIII mouse surrogate BiTE molecule in EGFR variant III (EGFRvIII)-positive breast tumors implanted within immunocompetent mice.
View Article and Find Full Text PDFBispecific T-cell engaging therapies harness the immune system to elicit an effective anticancer response. Modulating the immune activation avoiding potential adverse effects such as cytokine release syndrome (CRS) is a critical aspect to realizing the full potential of this therapy. The use of suitable exogenous intervention strategies to mitigate the CRS risk without compromising the antitumoral capability of bispecific antibody treatment is crucial.
View Article and Find Full Text PDFAs the pharmaceutical industry places greater emphasis on pairing biological pathways with appropriate therapeutic intervention, an increase in the use of biologic drugs has emerged. With increasing complexity of biotherapeutics, absorption, distribution, metabolism, and excretion (ADME) studies have also become increasingly complex. The characterization of ADME properties is critical to tuning the pharmacokinetic profiles of next generation biologics (NGBs).
View Article and Find Full Text PDFTherapeutic proteins (TPs) are a diverse drug class that include monoclonal antibodies (mAbs), recombinantly expressed enzymes, hormones and growth factors, cytokines (e.g. chemokines, interleukins, interferons), as well as a wide range of engineered fusion scaffolds containing IgG1 Fc domain for half-life extension.
View Article and Find Full Text PDFThe decision to pursue a monoclonal antibody (mAb) as a therapeutic for disease intervention requires the assessment of many factors, such as target-biology, including the total target burden and its accessibility at the intended site of action, as well as mAb-specific properties like binding affinity and the pharmacokinetics in serum and tissue. Interleukin-36 receptor (IL-36 R) is a member of the IL-1 family cytokine receptors and an attractive target to treat numerous epithelial-mediated inflammatory conditions, including psoriatic and rheumatoid arthritis, asthma, and chronic obstructive pulmonary disease. However, information concerning the expression profile of IL-36 R at the protein level is minimal, so the feasibility of developing a therapeutic mAb against this target is uncertain.
View Article and Find Full Text PDFExperiments designed to identify the mechanism of cytochrome P450 inactivation are critical to drug discovery. Small molecules irreversibly inhibit P450 enzymatic activity via two primary mechanisms: apoprotein adduct formation or heme modification. Understanding the interplay between chemical structures of reactive electrophiles and the impact on CYP3A4 structure and function can ultimately provide insights into drug design to minimize P450 inactivation.
View Article and Find Full Text PDFThe identification of nonopioid alternatives to treat chronic pain has received a great deal of interest in recent years. Recently, the engineering of a series of Nav1.7 inhibitory peptide-antibody conjugates has been reported, and herein, the preclinical efforts to identify novel approaches to characterize the pharmacokinetic properties of the peptide conjugates are described.
View Article and Find Full Text PDFFMS related tyrosine kinase 3 (FLT-3) is a tyrosine kinase expressed in early hematopoietic precursor cells and has roles in survival, proliferation, and differentiation. Bone marrow expression and mutagenic analysis of FLT-3 in Acute Myeloid Leukemia (AML) patients is well-characterized. However, the levels of circulating FLT-3 in serum have not been previously described.
View Article and Find Full Text PDFFormation of reactive metabolites that are capable to react with macromolecules could contribute to drug-induced toxicity. As part of early drug screening strategy to support small molecule structure-activity relationship analysis, glutathione (GSH) trapping is commonly used for the detection of reactive metabolites. When trapped, the GSH conjugates can be characterized using mass spectrometry (MS)-based methods.
View Article and Find Full Text PDFProtein engineering is at an all-time high in biopharmaceutics. As a result, absorption, distribution, metabolism and excretion (ADME) of proteins has become more important to understand in the context of engineering strategies to optimize therapeutic properties of potential lead constructs. Immunoaffinity capture coupled with a newly developed capillary electrophoresis - mass spectrometry (CE-MS) system was used to characterize intact protein mass analysis of a wild type Fc-FGF21 construct and a sequence re-engineered Fc-FGF21 construct from an in vivo study.
View Article and Find Full Text PDFSystems pharmacokinetic (PK) models that can characterize and predict whole body disposition of antibody-drug conjugates (ADCs) are needed to support (i) development of reliable exposure-response relationships for ADCs and (ii) selection of ADC targets with optimal tumor and tissue expression profiles. Towards this goal, we have developed a translational physiologically based PK (PBPK) model for ADCs, using T-DM1 as a tool compound. The preclinical PBPK model was developed using rat data.
View Article and Find Full Text PDFOprozomib is an oral proteasome inhibitor currently under investigation in patients with hematologic malignancies or solid tumors. Oprozomib elicits potent pharmacological actions by forming a covalent bond with the active site -terminal threonine of the 20S proteasome. Oprozomib has a short half-life across preclinical species and in patients due to systemic clearance via metabolism.
View Article and Find Full Text PDFCharacterization of in vitro and in vivo catabolism of therapeutic proteins has increasingly become an integral part of discovery and development process for novel proteins. Unambiguous and efficient identification of catabolites can not only facilitate accurate understanding of pharmacokinetic profiles of drug candidates, but also enables follow up protein engineering to generate more catabolically stable molecules with improved properties (pharmacokinetics and pharmacodynamics). Immunoaffinity capture (IC) followed by top-down intact protein analysis using either matrix-assisted laser desorption/ionization or electrospray ionization mass spectrometry analysis have been the primary methods of choice for catabolite identification.
View Article and Find Full Text PDFAim: Immobilized metal ion affinity chromatography is widely employed for purifying polyhistidine-tagged recombinant proteins from cell lysates. The technique can be applied for quantification of therapeutic proteins in biological matrices by LC-MS/MS.
Results: A protein reagent-free workflow was developed for quantifying polyhistidine-tagged proteins by LC-MS/MS.
Aim: PCSK9 and Lp(a) have been identified as potential biomarkers for cardiovascular disease. The ability to measure protein turnover rates will provide insights into the dynamic properties of these proteins and lead to better understanding of their biological roles. We aimed to implement the stable isotope-labeled tracers ([H]-leucine) and develop a novel LC-selected reaction monitoring (SRM) mass spectrometry (MS) method to study the kinetics of PCSK9 and Lp(a).
View Article and Find Full Text PDFAntibody-drug conjugates (ADC) rely on the target-binding specificity of an antibody to selectively deliver potent drugs to cancer cells. IgG antibody half-life is regulated by neonatal Fc receptor (FcRn) binding. Histidine 435 of human IgG was mutated to alanine (H435A) to explore the effect of FcRn binding on the pharmacokinetics, efficacy, and tolerability of two separate maytansine-based ADC pairs with noncleavable linkers, (c-DM1 and c-H435A-DM1) and (7v-Cys-may and 7v-H435A-Cys-may).
View Article and Find Full Text PDFJ Chromatogr B Analyt Technol Biomed Life Sci
February 2016
Characterization of monoclonal antibody (mAb) therapeutics by intact mass analysis provides important information on sequence integrity and post-translational modifications. In order to obtain domain specific information, monoclonal antibodies are reduced to heavy and light chain components or enzymatically digested into smaller portions or peptides. Liquid chromatography (LC) is widely used for separation of the antibody fragments in line with mass spectrometry (MS) for characterization.
View Article and Find Full Text PDFAn antibody-drug conjugate (ADC) is a unique therapeutic modality composed of a highly potent drug molecule conjugated to a monoclonal antibody. As the number of ADCs in various stages of nonclinical and clinical development has been increasing, pharmaceutical companies have been exploring diverse approaches to understanding the disposition of ADCs. To identify the key absorption, distribution, metabolism, and excretion (ADME) issues worth examining when developing an ADC and to find optimal scientifically based approaches to evaluate ADC ADME, the International Consortium for Innovation and Quality in Pharmaceutical Development launched an ADC ADME working group in early 2014.
View Article and Find Full Text PDFAntibody-drug conjugates (ADC) target cytotoxic drugs to antigen-positive cells for treating cancer. After internalization, ADCs with noncleavable linkers are catabolized to amino acid-linker-warheads within the lysosome, which then enter the cytoplasm by an unknown mechanism. We hypothesized that a lysosomal transporter was responsible for delivering noncleavable ADC catabolites into the cytoplasm.
View Article and Find Full Text PDFTherapeutic fusion proteins (TFPs) are designed to improve the therapeutic profile of an endogenous protein or protein fragment with a limited dose frequency providing the desired pharmacological activity in vivo. Fusion of a therapeutic protein to a half-life extension or targeting domain can improve the disposition of the molecule or introduce a novel mechanism of action. Prolonged exposure and altered biodistribution of an endogenous protein through fusion technology increases the potential for local protein unfolding during circulation increasing the chance for partial proteolysis of the therapeutic domain.
View Article and Find Full Text PDFAntibody drug conjugates are emerging as a powerful class of antitumor agents with efficacy across a range of cancers; therefore, understanding the disposition of this class of therapeutic is crucial. Reported here is a method of enriching a specific organelle (lysosome) to understand the catabolism of an anti-CD70 Ab-MCC-DM1, an antibody drug conjugate with a noncleavable linker. With such techniques a higher degree of concentration-activity relationship can be established for in vitro cell lines; this can aid in understanding the resultant catabolite concentrations necessary to exert activity.
View Article and Find Full Text PDF