Producers in Northwest Arkansas and globally need alternative management practices to ensure long-term sustainable and economical use of poultry litter, which is an abundant source of valuable carbon (C), nitrogen (N) and phosphorus (P). Project objectives were to measure the efficacy of conservation management practices (i.e.
View Article and Find Full Text PDFPhosphorus (P) runoff from pastures can cause accelerated eutrophication of surface waters. However, few long-term studies have been conducted on the effects of best management practices, such as rotational grazing and/or buffer strips on P losses from pastures. The objective of this study was to evaluate the long-term effects of grazing management and buffer strips on P runoff from pastures receiving annual (5.
View Article and Find Full Text PDFUnnecessary accumulation of phosphorus (P) in agricultural soils continues to degrade water quality and linked ecosystem services. Managing both soil loss and soil P fertility status is therefore crucial for eutrophication control, but the relative environmental benefits of these two mitigation measures, and the timescales over which they occur, remain unclear. To support policies toward reduced P loadings from agricultural soils, we examined the impact of soil conservation and lowering of soil test P (STP) in different regions with intensive farming (Europe, the United States, and Australia).
View Article and Find Full Text PDFWe measured NH₃ emissions from litter in broiler houses, during storage, and after land application and conducted a mass balance of N in poultry houses. Four state-of-the-art tunnel-ventilated broiler houses in northwest Arkansas were equipped with NH₃ sensors, anemometers, and data loggers to continuously record NH₃ concentrations and ventilation for 1 yr. Gaseous fluxes of NH₃, N₂O, CH₄, and CO₂ from litter were measured.
View Article and Find Full Text PDF