The basic reproduction number is one of the main parameters determining the spreading of an epidemic in a population of susceptible individuals. Wallinga and Lipsitch proposed a method for estimating using the Euler-Lotka equation, which requires the Laplace transform of the generation interval distribution. The determination of the generation time distribution is challenging, as the generation time is not directly observable.
View Article and Find Full Text PDFStochastic exponential growth is observed in a variety of contexts, including molecular autocatalysis, nuclear fission, population growth, inflation of the universe, viral social media posts, and financial markets. Yet literature on modeling the phenomenology of these stochastic dynamics has predominantly focused on one model, geometric Brownian motion (GBM), which can be described as the solution of a Langevin equation with linear drift and linear multiplicative noise. Using recent experimental results on stochastic exponential growth of individual bacterial cell sizes, we motivate the need for a more general class of phenomenological models of stochastic exponential growth, which are consistent with the observation that the mean-rescaled distributions are approximately stationary at long times.
View Article and Find Full Text PDFWe study the thermodynamic properties of a one-dimensional gas with one-dimensional gravitational interactions. Periodic boundary conditions are implemented as a modification of the potential consisting of a sum over mirror images (Ewald sum), regularized with an exponential cutoff. As a consequence, each particle carries with it its own background density.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
April 2012
We consider the class of short rate interest rate models for which the short rate is proportional to the exponential of a Gaussian Markov process x(t) in the terminal measure r(t)=a(t)exp[x(t)]. These models include the Black-Derman-Toy and Black-Karasinski models in the terminal measure. We show that such interest rate models are equivalent to lattice gases with attractive two-body interaction, V(t(1),t(2))=-Cov[x(t(1)),x(t(2))].
View Article and Find Full Text PDFWe consider the implications of the most general two-body quark-quark interaction Hamiltonian for the spin-flavor structure of the negative parity L = 1 excited baryons. Assuming the most general two-body quark interaction Hamiltonian, we derive two correlations among the masses and mixing angles of these states, which constrain the mixing angles, and can be used to test for the presence of three-body quark interactions. We find that the pure gluon-exchange model is disfavored by data, independently of any assumptions about hadronic wave functions.
View Article and Find Full Text PDFWe construct the most general nonlinear representation of chiral SU(2)LxSU(2)R broken down spontaneously to the isospin SU(2), on a pair of hadrons of same spin and isospin and opposite parity. We show that any such representation is equivalent, through a hadron field transformation, to two irreducible representations on two hadrons of opposite parity with different masses and axial-vector couplings. This implies that chiral symmetry realized in the Nambu-Goldstone mode does not predict the existence of degenerate multiplets of hadrons of opposite parity nor any relations between their couplings or masses.
View Article and Find Full Text PDFWe point out that the decays of B mesons into a vector meson and an axial-vector meson can distinguish between left and right-handed polarized mesons, in contrast to decays into two vector mesons. Measurements in B0-->D(*-)a(+)(1) are proposed for testing factorization and the V-A structure of the b-->c current, and for resolving a discrete ambiguity in 2beta+gamma.
View Article and Find Full Text PDFWe propose a way of measuring the photon polarization in radiative B decays into K resonance states decaying to Kpipi, which can test the standard model and probe new physics. The photon polarization is shown to be measured by the up-down asymmetry of the photon direction relative to the Kpipi decay plane in the K resonance rest frame. The integrated asymmetry in K1(1400)-->Kpipi, calculated to be 0.
View Article and Find Full Text PDF