Achieving homogeneity and reproducibility in the size, shape, and morphology of active pharmaceutical ingredient (API) particles is crucial for their successful manufacturing and performance. Herein, we describe a new method for API particle engineering using melt-jet printing technology as an alternative to the current solvent-based particle engineering methods. Paracetamol, a widely used API, was melted and jetted as droplets onto various surfaces to solidify and form microparticles.
View Article and Find Full Text PDFAs the medical use of Cannabis is evolving there is a greater demand for high-quality products for patients. One of the main steps in the manufacturing process of medical Cannabis is drying. Most current drying methods in the Cannabis industry are relatively slow and inefficient processes.
View Article and Find Full Text PDFThe therapeutic effect of the plant largely depends on the presence and specific ratio of a spectrum of phytocannabinoids. Although prescription of medicinal for various conditions constantly grows, its consumption is mostly limited to oral or respiratory pathways, impeding its duration of action, bioavailability, and efficacy. Herein, a long-acting formulation in the form of melt-printed polymeric microdepots for full-spectrum cannabidiol (CBD)-rich extract administration is described.
View Article and Find Full Text PDFComposite electrodes made of the polysaccharide agarose and carbon nanotube fibers (A-CNE) have shown potential to be applied as tissue-compatible, micro-electronic devices. In the present work, A-CNEs were functionalized using neuro-relevant proteins (laminin and alpha-melanocyte stimulating hormone) and implanted in brain tissue for 1 week (acute response) and 4 weeks (chronic response). Qualitative and quantitative analysis of neuronal and immunological responses revealed significant changes in immunological response to implanted materials depending on the type of biomolecule used.
View Article and Find Full Text PDFJ Mater Sci Mater Med
November 2013
The challenging paradigm of bioresorbable polymers, whether in drug delivery or tissue engineering, states that a fine-tuning of the interplay between polymer properties (e.g., thermal, degradation), and the degree of cell/tissue replacement and remodeling is required.
View Article and Find Full Text PDFWe have recently reported on an ultrafast degrading tyrosine-derived terpolymer that degrades and resorbs within hours, and is suitable for use in cortical neural prosthetic applications. Here we further characterize this polymer, and describe a new tyrosine-derived fast degrading terpolymer in which the poly(ethylene glycol) (PEG) is replaced by poly(trimethylene carbonate) (PTMC). This PTMC containing terpolymer showed similar degradation characteristics but its resorption was negligible in the same period.
View Article and Find Full Text PDFWe have identified a polymeric system based on a novel tyrosine-derived terpolymer that offers desirable insertion capability for flexible neural prosthetic devices. To test this concept, flexible films were coated with this terpolymer and their suitability for peranchyma insertion was visualized. The effect of the polymer on neural recording was evaluated using coated microwire probes.
View Article and Find Full Text PDFIEEE Trans Neural Syst Rehabil Eng
April 2011
Next-generation neuroprosthetic limbs will require a reliable long-term neural interface to residual nerves in the peripheral nervous system (PNS). To this end, we have developed novel biocompatible materials and a fabrication technique to create high site-count microelectrodes for stimulating and recording from regenerated peripheral nerves. Our electrodes are based on a biodegradable tyrosine-derived polycarbonate polymer system with suitable degradation and erosion properties and a fabrication technique for deployment of the polymer in a porous, degradable, regenerative, multiluminal, multielectrode conduit.
View Article and Find Full Text PDF