Publications by authors named "Dan Landayan"

Many early-career neuroscientists with diverse identities may not have mentors who are more advanced in the neuroscience pipeline and have a congruent identity due to historic biases, laws, and policies impacting access to education. Cross-identity mentoring relationships pose challenges and power imbalances that impact the retention of diverse early career neuroscientists, but also hold the potential for a mutually enriching and collaborative relationship that fosters the mentee's success. Additionally, the barriers faced by diverse mentees and their mentorship needs may evolve with career progression and require developmental considerations.

View Article and Find Full Text PDF

Social interactions require awareness and understanding of the behavior of others. Mirror neurons, cells representing an action by self and others, have been proposed to be integral to the cognitive substrates that enable such awareness and understanding. Mirror neurons of the primate neocortex represent skilled motor tasks, but it is unclear if they are critical for the actions they embody, enable social behaviors, or exist in non-cortical regions.

View Article and Find Full Text PDF

Thirst is a motivational state that drives behaviors to obtain water for fluid homeostasis. We identified two types of central brain interneurons that regulate thirsty water seeking in , that we term the Janu neurons. Janu-GABA, a local interneuron in the subesophageal zone, is activated by water deprivation and is specific to thirsty seeking.

View Article and Find Full Text PDF

The distance between nodes of Ranvier, referred to as internode length, positively correlates with axon diameter, and is optimized during development to ensure maximal neuronal conduction velocity. Following myelin loss, internode length is reestablished through remyelination. However, remyelination results in short internode lengths and reduced conduction rates.

View Article and Find Full Text PDF

Hunger evokes stereotypic behaviors that favor the discovery of nutrients. The neural pathways that coordinate internal and external cues to motivate foraging behaviors are only partly known. Drosophila that are food deprived increase locomotor activity, are more efficient in locating a discrete source of nutrition, and are willing to overcome adversity to obtain food.

View Article and Find Full Text PDF

The neural circuitry and molecules that control the rewarding properties of food and drugs of abuse appear to partially overlap in the mammalian brain. This has raised questions about the extent of the overlap and the precise role of specific circuit elements in reward and in other behaviors associated with feeding regulation and drug responses. The much simpler brain of invertebrates including the fruit fly Drosophila, offers an opportunity to make high-resolution maps of the circuits and molecules that govern behavior.

View Article and Find Full Text PDF