During the postnatal period in mammals, the cardiac muscle transitions from hyperplasic to hypertrophic growth, the extracellular matrix (ECM) undergoes remodeling, and the heart loses regenerative capacity. While ECM maturation and crosstalk between cardiac fibroblasts (CFs) and cardiomyocytes (CMs) have been implicated in neonatal heart development, not much is known about specialized fibroblast heterogeneity and function in the early postnatal period. In order to better understand CF functions in heart maturation and postnatal cardiomyocyte cell-cycle arrest, we have performed gene expression profiling and ablation of postnatal CF populations.
View Article and Find Full Text PDFBackground: Delayed esophageal transit or disintegration of oral bisphosphonate tablets before they enter the stomach may be of concern with respect to iatrogenic complications among patients receiving longterm treatment. Different formulations of generic bisphosphonate tablets meeting regulatory requirements may have substantial differences in pharmaceutical attributes from the branded product that may result in different characteristics during esophageal transit.
Objective: The primary objective of this study was to evaluate and compare esophageal transit times and in vivo disintegration of 3 bisphosphonate formulations, one branded and the others generic, that are commercially available in Canada and the United Kingdom.