Extracellular vesicles (EVs) are associated with intercellular communications, immune responses, viral pathogenicity, cardiovascular diseases, neurological disorders, and cancer progression. EVs deliver proteins, metabolites, and nucleic acids into recipient cells to effectively alter their physiological and biological response. During their transportation from the donor to the recipient cell EVs face differential ionic concentrations, which can be detrimental to their integrity and impact their cargo content.
View Article and Find Full Text PDFAm J Physiol Cell Physiol
September 2018
The choroid plexus (CP) epithelium plays a major role in the production of cerebrospinal fluid (CSF). A polarized cell line, the porcine CP-Riems (PCP-R) line, which exhibits many of the characteristics of the native epithelium, was used to study the effect of activation of the transient receptor potential vanilloid 4 (TRPV4) cation channel found in the PCP-R cells as well as in the native epithelium. Ussing-style electrophysiological experiments showed that activation of TRPV4 with a specific agonist, GSK1016790A, resulted in an immediate increase in both transepithelial ion flux and conductance.
View Article and Find Full Text PDFBig conductance potassium (BK) channels contribute to K flow and electrical behavior in many cell types. Mice made null for the gene () producing the BK channel (BK) exhibit numerous deficits in physiological functions. Breeding mice lacking a single allele of (C57BL/6J background) had litter sizes of approximately eight pups.
View Article and Find Full Text PDFAm J Physiol Gastrointest Liver Physiol
December 2012
Secretagogues acting at a variety of receptor types activate electrogenic K(+) secretion in guinea pig distal colon, often accompanied by Cl(-) secretion. Distinct blockers of K(Ca)1.1 (BK, Kcnma1), iberiotoxin (IbTx), and paxilline inhibited the negative short-circuit current (I(sc)) associated with K(+) secretion.
View Article and Find Full Text PDFAdrenaline activates transient Cl(-) secretion and sustained K(+) secretion across isolated distal colonic mucosa of guinea-pigs. The Ca(2+)-activated Cl(-) channel inhibitor CaCCinh-A01 (30 μm) significantly reduced electrogenic K(+) secretion, detected as short-circuit current (I(sc)). This inhibition supported the cell model for K(+) secretion in which basolateral membrane Cl(-) channels provide an exit pathway for Cl(-) entering the cell via Na(+)-K(+)-2Cl(-) cotransporters.
View Article and Find Full Text PDFAm J Physiol Gastrointest Liver Physiol
July 2010
Adrenergic stimulation of isolated guinea pig distal colonic mucosa produced transient Cl(-) and sustained K(+) secretion. Transient short-circuit current (I(sc)) depended on beta(2)-adrenergic receptors (beta(2)-AdrR), and sustained I(sc) relies on a beta(1)-AdrR/beta(2)-AdrR complex. Epinephrine (epi) increased cAMP content with a biphasic time course similar to changes in epi-activated I(sc) ((epi)I(sc)).
View Article and Find Full Text PDFAm J Physiol Gastrointest Liver Physiol
August 2009
Adrenergic activation of electrogenic K+ secretion in isolated mucosa from guinea pig distal colon was desensitized by peptide-YY (PYY). Addition of PYY or neuropeptide-Y (NPY) to the bathing solution of mucosae in Ussing chambers suppressed the short-circuit current (Isc) corresponding to electrogenic Cl- secretion, whether stimulated by epinephrine (epi), prostaglandin-E2 (PGE2), or carbachol (CCh). Neither peptide markedly inhibited the large transient component of synergistic secretion (PGE2 + CCh).
View Article and Find Full Text PDFAm J Physiol Gastrointest Liver Physiol
August 2009
Adrenergic stimulation of electrogenic K+ secretion in isolated mucosa from guinea pig distal colon required activation of two beta-adrenergic receptor subtypes (beta-AdrR). Addition of epinephrine (epi) or norepinephrine (norepi) to the bathing solution of mucosae in Ussing chambers increased short-circuit current (Isc) and transepithelial conductance (Gt), consistent with this cation secretion. A beta-adrenergic classification was supported by propranolol antagonism of this secretory response and the lack of effect by the alpha-AdrR antagonists BE2254 (alpha1-AdrR) and yohimbine (alpha2-AdrR).
View Article and Find Full Text PDFAm J Physiol Cell Physiol
October 2006
Secretion of Cl(-) and K(+) in the colonic epithelium operates through a cellular mechanism requiring K(+) channels in the basolateral and apical membranes. Transepithelial current [short-circuit current (I(sc))] and conductance (G(t)) were measured for isolated distal colonic mucosa during secretory activation by epinephrine (Epi) or PGE(2) and synergistically by PGE(2) and carbachol (PGE(2) + CCh). TRAM-34 at 0.
View Article and Find Full Text PDFThe cellular mechanism for Cl(-) and K(+) secretion in the colonic epithelium requires K(+) channels in the basolateral and apical membranes. Colonic mucosa from guinea pig and rat were fixed, sectioned, and then probed with antibodies to the K(+) channel proteins K(V)LQT1 (Kcnq1) and minK-related peptide 2 (MiRP2, Kcne3). Immunofluorescence labeling for Kcnq1 was most prominent in the lateral membrane of crypt cells in rat colon.
View Article and Find Full Text PDFIntroduction: Migration of neutrophils across the intestinal epithelium is the hallmark of inflammatory conditions of the bowel. In cultured intestinal epithelial monolayer models, neutrophils can be induced to migrate along a chemotactic gradient such as n-formyl-methionyl-leucyl-phenylalanine (fMLP). Physical passage of the neutrophils across the epithelium could disrupt the tight-junctions, possibly leading to a large increase in the transepithelial conductance (G(t)).
View Article and Find Full Text PDFAm J Physiol Cell Physiol
April 2003
Cell-attached recordings revealed Cl(-) channel activity in basolateral membrane of guinea pig distal colonic crypts isolated from basement membrane. Outwardly rectified currents ((gp)Cl(or)) were apparent with a single-channel conductance (gamma) of 29 pS at resting membrane electrical potential; another outward rectifier with gamma of 24 pS was also observed ( approximately 25% of (gp)Cl(or)). At a holding potential of -80 mV gamma was 18 pS for both (gp)Cl(or) currents, and at +80 mV gamma was 67 and 40 pS, respectively.
View Article and Find Full Text PDFAm J Physiol Cell Physiol
April 2002
Cell-attached recordings revealed K(+) channel activity in basolateral membranes of guinea pig distal colonic crypts. Inwardly rectified currents were apparent with a pipette solution containing 140 mM K(+). Single-channel conductance (gamma) was 9 pS at the resting membrane potential.
View Article and Find Full Text PDF