Publications by authors named "Dan Gresh"

Fault-tolerant operations based on stabilizer codes are the state of the art in suppressing error rates in quantum computations. Most such codes do not permit a straightforward implementation of non-Clifford logical operations, which are necessary to define a universal gate set. As a result, implementations of these operations must use either error-correcting codes with more complicated error correction procedures or gate teleportation and magic states, which are prepared at the logical level, increasing overhead to a degree that precludes near-term implementation.

View Article and Find Full Text PDF

The quantum approximate optimization algorithm (QAOA) is a leading candidate algorithm for solving optimization problems on quantum computers. However, the potential of QAOA to tackle classically intractable problems remains unclear. Here, we perform an extensive numerical investigation of QAOA on the low autocorrelation binary sequences (LABS) problem, which is classically intractable even for moderately sized instances.

View Article and Find Full Text PDF