The condition of having a healthy, functional proteome is known as protein homeostasis, or proteostasis. Establishing and maintaining proteostasis is the province of the proteostasis network, approximately 2,700 components that regulate protein synthesis, folding, localization, and degradation. The proteostasis network is a fundamental entity in biology that is essential for cellular health and has direct relevance to many diseases of protein conformation.
View Article and Find Full Text PDFImbalances in endoplasmic reticulum (ER) proteostasis are associated with etiologically-diverse degenerative diseases linked to excessive extracellular protein misfolding and aggregation. Reprogramming of the ER proteostasis environment through genetic activation of the Unfolded Protein Response (UPR)-associated transcription factor ATF6 attenuates secretion and extracellular aggregation of amyloidogenic proteins. Here, we employed a screening approach that included complementary arm-specific UPR reporters and medium-throughput transcriptional profiling to identify non-toxic small molecules that phenocopy the ATF6-mediated reprogramming of the ER proteostasis environment.
View Article and Find Full Text PDFChaperones are central to the proteostasis network (PN) and safeguard the proteome from misfolding, aggregation, and proteotoxicity. We categorized the human chaperome of 332 genes into network communities using function, localization, interactome, and expression data sets. During human brain aging, expression of 32% of the chaperome, corresponding to ATP-dependent chaperone machines, is repressed, whereas 19.
View Article and Find Full Text PDFDiseases of protein folding arise because of the inability of an altered peptide sequence to properly engage protein homeostasis components that direct protein folding and function. To identify global principles of misfolding disease pathology we examined the impact of the local folding environment in alpha-1-antitrypsin deficiency (AATD), Niemann-Pick type C1 disease (NPC1), Alzheimer's disease (AD), and cystic fibrosis (CF). Using distinct models, including patient-derived cell lines and primary epithelium, mouse brain tissue, and Caenorhabditis elegans, we found that chronic expression of misfolded proteins not only triggers the sustained activation of the heat shock response (HSR) pathway, but that this sustained activation is maladaptive.
View Article and Find Full Text PDFParkinson disease (PD) is a complex neurodegenerative disorder with largely unknown genetic mechanisms. While the degeneration of dopaminergic neurons in PD mainly takes place in the substantia nigra pars compacta (SN) region, other brain areas, including the prefrontal cortex, develop Lewy bodies, the neuropathological hallmark of PD. We generated and analyzed expression data from the prefrontal cortex Brodmann Area 9 (BA9) of 27 PD and 26 control samples using the 44K One-Color Agilent 60-mer Whole Human Genome Microarray.
View Article and Find Full Text PDFThe accumulation of misfolded proteins is a common feature of many neurodegenerative diseases. These observations suggest a potential link between these disorders and protein quality control, a collection of cellular pathways that sense damage to proteins and facilitate their turnover. Consistent with this idea, activation of quality control components, such as molecular chaperones, has been shown to be protective in multiple neurodegenerative disease models.
View Article and Find Full Text PDFProtein homeostasis (proteostasis) is essential for cellular and organismal health. Stress, aging and the chronic expression of misfolded proteins, however, challenge the proteostasis machinery and the vitality of the cell. Enhanced expression of molecular chaperones, regulated by heat shock transcription factor-1 (HSF-1), has been shown to restore proteostasis in a variety of conformational disease models, suggesting this mechanism as a promising therapeutic approach.
View Article and Find Full Text PDFUnlabelled: The recent establishment of high-throughput methods for culturing Drosophila provided a unique ability to screen compound libraries against complex disease phenotypes in the context of whole animals. However, as compound studies in Drosophila have been limited so far, the degree of conservation of compound activity between Drosophila and vertebrates or the effectiveness of feeding as a compound delivery system is not well known. Our comprehensive in vivo analysis of 27 small molecules targeting seven signaling pathways in Drosophila revealed a high degree of conservation of compound activity between Drosophila and vertebrates.
View Article and Find Full Text PDFMaintenance of cellular protein homeostasis (proteostasis) depends on a complex network of molecular chaperones, proteases and other regulatory factors. Proteostasis deficiency develops during normal aging and predisposes individuals for many diseases, including neurodegenerative disorders. Here we describe sensor proteins for the comparative measurement of proteostasis capacity in different cell types and model organisms.
View Article and Find Full Text PDFObjective: To compare head motions that occur when trained professionals perform the head squeeze (HS) and trap squeeze (TS) C-spine stabilization techniques.
Design: Cross-over design.
Participants: Twelve experienced lead rescuers.
The gamma-secretase complex is involved in cleaving transmembrane proteins such as Notch and one of the genes targeted in Alzheimer's disease known as amyloid precursor protein (APP). Presenilins function within the catalytic core of gamma-secretase, and mutated forms of presenilins were identified as causative factors in familial Alzheimer's disease. Recent studies show that in addition to Notch and APP, numerous signal transduction pathways are modulated by presenilins, including intracellular calcium signaling.
View Article and Find Full Text PDFThe mechanism of widespread neuronal death occurring in Alzheimer's disease (AD) remains enigmatic even after extensive investigation during the last two decades. Amyloid beta 42 peptide (Abeta(1-42)) is believed to play a causative role in the development of AD. Here we expressed human Abeta(1-42) and amyloid beta 40 (Abeta(1-40)) in Drosophila neurons.
View Article and Find Full Text PDFAlzheimer's (AD) is a progressive neurodegenerative disease that afflicts a significant fraction of older individuals. Although a proteolytic product of the Amyloid precursor protein, the Alphabeta42 polypeptide, has been directly implicated in the disease, the genes and biological pathways that are deployed during the process of Alphabeta42 induced neurodegeneration are not well understood and remain controversial. To identify genes and pathways that mediated Alphabeta42 induced neurodegeneration we took advantage of a Drosophila model for AD disease in which ectopically expressed human Alphabeta42 polypeptide induces cell death and tissue degeneration in the compound eye.
View Article and Find Full Text PDFIn fasted mammals, glucose homeostasis is maintained through induction of the cAMP response element-binding protein (CREB) coactivator transducer of regulated CREB activity 2 (TORC2), which stimulates the gluconeogenic program in concert with the forkhead factor FOXO1. Here we show that starvation also triggers TORC activation in Drosophila, where it maintains energy balance through induction of CREB target genes in the brain. TORC mutant flies have reduced glycogen and lipid stores and are sensitive to starvation and oxidative stress.
View Article and Find Full Text PDFSustained increases in life expectancy have underscored the importance of managing diseases with a high incidence in late life, such as various neurodegenerative conditions. Alzheimer's disease (AD) is the most common among these, and consequently significant research effort is spent on studying it. Although a lot is known about the pathology of AD and the role of beta-amyloid (Abeta) peptides, the complete network of interactions regulating Abeta metabolism and toxicity still eludes us.
View Article and Find Full Text PDFMitochondrial dysfunction is associated with many human diseases. There has not been a systematic genetic approach for identifying regulators of basal mitochondrial biogenesis and function in higher eukaryotes. We performed a genome-wide RNA interference (RNAi) screen in Drosophila cells using mitochondrial Citrate synthase (CS) activity as the primary readout.
View Article and Find Full Text PDFPost-translational modifications of histones are involved in transcript initiation and elongation. Methylation of lysine 36 of histone H3 (H3K36me) resides promoter distal at transcribed regions in Saccharomyces cerevisiae and is thought to prevent spurious initiation through recruitment of histone-deacetylase activity. Here, we report surprising complexity in distribution, regulation and readout of H3K36me in Drosophila involving two histone methyltransferases (HMTases).
View Article and Find Full Text PDFA prominent feature of late-onset neurodegenerative diseases is accumulation of misfolded protein in vulnerable neurons. When levels of misfolded protein overwhelm degradative pathways, the result is cellular toxicity and neurodegeneration. Cellular mechanisms for degrading misfolded protein include the ubiquitin-proteasome system (UPS), the main non-lysosomal degradative pathway for ubiquitinated proteins, and autophagy, a lysosome-mediated degradative pathway.
View Article and Find Full Text PDFHighly conserved during evolution, the enzyme Ubc9 activates the small ubiquitin-like modifier (SUMO) prior to its covalent ligation to target proteins. We have used mutations in the Drosophila Ubc9 (dUbc9) gene to understand Ubc9 functions in vivo. Loss-of-function mutations in dUbc9 cause strong mitotic defects in larval hematopoietic tissues, an increase in the number of hematopoietic precursors in the lymph gland and of mature blood cells in circulation, and an increase in the proportion of cyclin-B-positive cells.
View Article and Find Full Text PDFThe CREB family of proteins are critical mediators of gene expression in response to extracellular signals and are essential regulators of adaptive behavior and long-term memory formation. The TORC proteins were recently described as potent CREB coactivators, but their role in regulation of CREB activity remained unknown. TORC proteins were found to be exported from the nucleus in a CRM1-dependent fashion.
View Article and Find Full Text PDFThis report describes an unbiased method for systematically determining gene function in mammalian cells. A total of 20,704 predicted human full-length cDNAs were tested for induction of the IL-8 promoter. A number of genes, including those for cytokines, receptors, adapters, kinases, and transcription factors, were identified that induced the IL-8 promoter through known regulatory sites.
View Article and Find Full Text PDFL63 encodes a CDK-like protein homologous to the mammalian PFTAIRE. We showed previously that L63 provides a CDK-related function critical to development (Dev. Biol.
View Article and Find Full Text PDFThe exocyst (Sec6/8) complex is necessary for secretion in yeast and has been postulated to establish polarity by directing vesicle fusion to specific sites along the plasma membrane. The complex may also function in the nervous system, but its precise role is unknown. We have investigated exocyst function in Drosophila with mutations in one member of the complex, sec5.
View Article and Find Full Text PDF