Publications by authors named "Dan Eduard Mihaiescu"

Iron oxide nanoparticles were synthesized using a vortex microfluidic system and subsequently functionalized with a primary shell of salicylic acid, recognized for its ability to increase the stability and biocompatibility of coated materials. In the second stage, the vortex platform was placed in a magnetic field to facilitate the growth and development of a porous silica shell. The selected drug for this study was micafungin, an antifungal agent well regarded for its effectiveness in combating fungal infections and identified as a priority compound by the World Health Organization (WHO).

View Article and Find Full Text PDF

Bone grafting in oral and maxillofacial surgery has evolved significantly due to developments in materials science, offering innovative alternatives for the repair of bone defects. A few grafts are currently used in clinical settings, including autografts, xenografts, and allografts. However, despite their benefits, they have some challenges, such as limited availability, the possibility of disease transmission, and lack of personalization for the defect.

View Article and Find Full Text PDF

Aerogels have emerged as appealing materials for various applications due to their unique features, such as low density, high porosity, high surface area, and low thermal conductivity. Aiming to bring the advantages of these materials to the environmental field, this study focuses on synthesizing magnetic silica aerogel-based films suitable for water decontamination. In this respect, a novel microfluidic platform was created to obtain core-shell iron oxide nanoparticles that were further incorporated into gel-forming precursor solutions.

View Article and Find Full Text PDF

This study's main objective was to fabricate an innovative three-dimensional microfluidic platform suitable for well-controlled chemical syntheses required for producing fine-tuned nanostructured materials. This work proposes using vortex mixing principles confined within a 3D multilayered microreactor to synthesize magnetic core-shell nanoparticles with tailored dimensions and polydispersity. The newly designed microfluidic platform allowed the simultaneous obtainment of FeO cores and their functionalization with a salicylic acid shell in a short reaction time and under a high flow rate.

View Article and Find Full Text PDF

The treatment of chronic wounds involves precise requirements and complex challenges, as the healing process cannot go beyond the inflammatory phase, therefore increasing the healing time and implying a higher risk of opportunistic infection. Following a better understanding of the healing process, oxygen supply has been validated as a therapeutic approach to improve and speed up wound healing. Moreover, the local implications of antimicrobial agents (such as silver-based nano-compounds) significantly support the normal healing process, by combating bacterial contamination and colonization.

View Article and Find Full Text PDF

Water contamination by harmful organic and inorganic compounds seriously burdens human health and aquatic life. A series of conventional water purification methods can be employed, yet they come with certain disadvantages, including resulting sludge or solid waste, incomplete treatment process, and high costs. To overcome these limitations, attention has been drawn to nanotechnology for fabricating better-performing adsorbents for contaminant removal.

View Article and Find Full Text PDF

Silica aerogels have gained much interest due to their unique properties, such as being the lightest solid material, having small pore sizes, high porosity, and ultralow thermal conductivity. Also, the advancements in synthesis methods have enabled the creation of silica aerogel-based composites in combination with different materials, for example, polymers, metals, and carbon-based structures. These new silica-based materials combine the properties of silica with the other materials to create a new and reinforced architecture with significantly valuable uses in different fields.

View Article and Find Full Text PDF

Magnetite nanoparticles (FeO NPs) are among the most investigated nanomaterials, being recognized for their biocompatibility, versatility, and strong magnetic properties. Given that their applicability depends on their dimensions, crystal morphology, and surface chemistry, FeO NPs must be synthesized in a controlled, simple, and reproducible manner. Since conventional methods often lack tight control over reaction parameters and produce materials with unreliable characteristics, increased scientific interest has been directed to microfluidic techniques.

View Article and Find Full Text PDF

Currently, the treatment of wounds is still a challenge for healthcare professionals due to high complication incidences and social impacts, and the development of biocompatible and efficient medicines remains a goal. In this regard, mesoporous materials loaded with bioactive compounds from natural extracts have a high potential for wound treatment due to their nontoxicity, high loading capacity and slow drug release. MCM-41-type mesoporous material was synthesized by using sodium trisilicate as a silica source at room temperature and normal pressure.

View Article and Find Full Text PDF

The highest amount of the world's polyethylene terephthalate (PET) is designated for fiber production (more than 60%) and food packaging (30%) and it is one of the major polluting polymers. Although there is a great interest in recycling PET-based materials, a large amount of unrecycled material is derived mostly from the food and textile industries. The aim of this study was to obtain and characterize nanostructured membranes with fibrillar consistency based on recycled PET and nanoparticles (FeO@UA) using the electrospinning technique.

View Article and Find Full Text PDF

Oxidative stress is the most critical factor in multiple functional disorders' development, and natural antioxidants could protect the human body against it. Our study aims to investigate the polyphenol content of four extracts of two medicinal plants ( L. and L.

View Article and Find Full Text PDF

The aim of the present study was to obtain, characterize, and evaluate the antioxidant potential of some extracts obtained from the bark of var. Roth., the root of L.

View Article and Find Full Text PDF

The use of bio-based reagents for silver nanoparticle (AgNP) production has gained much attention among researchers as it has paved the way for environmentally friendly approaches at low cost for synthesizing nanomaterials while maintaining their properties. In this study, aqueous extract was used for silver nanoparticle phyto-synthesis, and the resulting treatment was applied to textile fabrics to test its antimicrobial properties against bacteria and fungi strains. The chromatic effect was also established by determining the L*a*b* parameters.

View Article and Find Full Text PDF

Chronic venous disease is one of the most common vascular diseases; the signs and symptoms are varied and are often neglected in the early stages. Vascular damage is based on proinflammatory, prothrombotic, prooxidant activity and increased expression of several matrix metalloproteinases (MMPs). The aim of this research is preparation and preliminary characterization of three vegetal extracts (-SE, -GE and -CE).

View Article and Find Full Text PDF

In the last decades, increased intakes of contaminants and the habitats' destruction have produced drastic changes in the aquatic ecosystems. The environmental contaminants can accumulate in aquatic organisms, leading to the disturbance of the antioxidant/prooxidant balance in fish. In this context, we evaluated the level of organic, inorganic and microbiological pollutants in four leisure lakes (Chitila, Floreasca, Tei and Vacaresti) from Bucharest, the largest city of Romania, in order to compare their effects on hepatopancreas and gills metabolism and antioxidant defense mechanisms in Carassius gibelio, the most known and widespread freshwater fish in this country.

View Article and Find Full Text PDF

Hydrogel-based dressings exhibit suitable features for successful wound healing, including flexibility, high water-vapor permeability and moisture retention, and exudate absorption capacity. Moreover, enriching the hydrogel matrix with additional therapeutic components has the potential to generate synergistic results. Thus, the present study centered on diabetic wound healing using a Matrigel-enriched alginate hydrogel embedded with polylactic acid (PLA) microspheres containing hydrogen peroxide (HO).

View Article and Find Full Text PDF

As a third-generation β-lactam antibiotic, cefotaxime shows a broad-spectrum with Gram-positive and Gram-negative bacteria activity and is included in WHO's essential drug list. In order to obtain new materials with sustained release properties, the present research focuses on the study of cefotaxime absorption and desorption from different functionalized mesoporous silica supports. The MCM-41-type nanostructured mesoporous silica support was synthesized by sol-gel technique using a tetraethyl orthosilicate (TEOS) route and cetyltrimethylammonium bromide (CTAB) as a surfactant, at room temperature and normal pressure.

View Article and Find Full Text PDF

With a simple synthesis and easy engineering of physicochemical properties, iron oxide nanoparticles (IONPs) have become widely used in multiple biomedical applications. The study of IONPs toxicity has become an important issue, especially as the results reported so far are contradictory and range from lack of toxicity to cellular toxicity. The aim of this study was to evaluate the histopathological changes induced in mouse liver by long-term intraperitoneal injection of low doses of IONPs functionalized with salicylic acid (SaIONPs).

View Article and Find Full Text PDF

Since medicinal plants are widely used in treating various diseases, phytoconstituents enrichment strategies are of high interest for plant growers. First of all, we investigated the impact of phytosociological cultivation on polyphenolic content (total flavonoids-TFL, and total polyphenols-TPC) of peppermint ( L.) and lemon balm ( L.

View Article and Find Full Text PDF

Since its first use as a drug delivery system, mesoporous silica has proven to be a surprisingly efficient vehicle due to its porous structure. Unfortunately, most synthesis methods are based on using large amounts of surfactants, which are then removed by solvent extraction or heat treatment, leading to an undesired environmental impact because of the generated by-products. Hence, in the present study, we followed the synthesis of a silica material with a wormhole-like pore arrangement, using two FDA-approved substances as templates, namely Tween-20 and starch.

View Article and Find Full Text PDF

Microfluidics is defined as emerging science and technology based on precisely manipulating fluids through miniaturized devices with micro-scale channels and chambers. Such microfluidic systems can be used for numerous applications, including reactions, separations, or detection of various compounds. Therefore, due to their potential as microreactors, a particular research focus was noted in exploring various microchannel configurations for on-chip chemical syntheses of materials with tailored properties.

View Article and Find Full Text PDF

Software tools that are able to simulate the functionality or interactions of an enzyme biosensor with Metal Oxide Semiconductor (MOS), or any Field Effect Transistor (FET) as transducer, represent a gap in the market. Bio-devices, or Enzyme-FET, cannot be simulated by Atlas or equivalent software. This paper resolves this issue for the enzymatic block coupled with FETs' role within biosensors.

View Article and Find Full Text PDF

Fish are able to accumulate by ingestion various contaminants of aquatic environment, with negative consequences on their intestine, being continuously threatened worldwide by heavy metals, pesticides and antibiotics resulted from the human activities. Consequently, the health of other species can be affected by eating the contaminated fish meat. In this context, our study aimed to perform a comparison between the changes in intestine samples of individuals collected from different artificial lakes in Bucharest (Romania), used by people for leisure and fishing.

View Article and Find Full Text PDF

In this paper, novel drug delivery systems (DDS) were designed based on graphene oxide (GO) as nanocarrier, loaded with two natural substances (quercetin (Qu) and juglone (Ju)) at different concentrations. The chemical structure and morphology of the synthesized GO-based materials were characterized by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and Raman spectroscopy. The antibacterial activity was evaluated against standard strains, ATCC 6538, ATCC 8739, and ATCC 10231.

View Article and Find Full Text PDF