Advances in sequencing technology are allowing forensic scientists to access genetic information from increasingly challenging samples. A recently published computational approach, IBDGem, analyzes sequencing reads, including from low-coverage samples, in order to arrive at likelihood ratios for human identification. Here, we show that likelihood ratios produced by IBDGem are best interpreted as testing a null hypothesis different from the traditional one used in a forensic genetics context.
View Article and Find Full Text PDFMetabolic efficiency, as a selective force shaping proteomes, has been shown to exist in Escherichia coli and Bacillus subtilis and in a small number of organisms with photoautotrophic and thermophilic lifestyles. Earlier attempts at larger-scale analyses have utilized proxies (such as molecular weight) for biosynthetic cost, and did not consider lifestyle or auxotrophy. This study extends the analysis to all currently sequenced microbial organisms that are amenable to these analyses while utilizing lifestyle specific amino acid biosynthesis pathways (where possible) to determine protein production costs and compensating for auxotrophy.
View Article and Find Full Text PDFProtein products of highly expressed genes tend to favor amino acids that have lower average biosynthetic costs (i.e., they exhibit metabolic efficiency).
View Article and Find Full Text PDFIEEE/ACM Trans Comput Biol Bioinform
April 2014
Forensic samples containing DNA from two or more individuals can be difficult to interpret. Even ascertaining the number of contributors to the sample can be challenging. These uncertainties can dramatically reduce the statistical weight attached to evidentiary samples.
View Article and Find Full Text PDFIEEE/ACM Trans Comput Biol Bioinform
June 2011
The study of codon usage bias is an important research area that contributes to our understanding of molecular evolution, phylogenetic relationships, respiratory lifestyle, and other characteristics. Translational efficiency bias is perhaps the most well-studied codon usage bias, as it is frequently utilized to predict relative protein expression levels. We present a novel approach to isolating translational efficiency bias in microbial genomes.
View Article and Find Full Text PDFIEEE/ACM Trans Comput Biol Bioinform
August 2010
Genomic sequencing projects are an abundant source of information for biological studies ranging from the molecular to the ecological in scale; however, much of the information present may yet be hidden from casual analysis. One such information domain, trends in codon usage, can provide a wealth of information about an organism's genes and their expression. Degeneracy in the genetic code allows more than one triplet codon to code for the same amino acid, and usage of these codons is often biased such that one or more of these synonymous codons are preferred.
View Article and Find Full Text PDFWhen the smaller of two peaks at an STR locus is less than 70% the magnitude of the larger peak at that locus, the disparity is typically taken to be an indication that there is more than one contributor of template DNA to the sample being tested. An analysis of 1,763 heterozygous allele pairs suggests that a peak height imbalance threshold that varies with the magnitude of the peaks being evaluated at a locus is superior to a fixed threshold. Identifying samples that are likely to be mixtures and those that are likely to have arisen from a single source is accomplished more reliably when a statistically based, magnitude-dependent peak height imbalance threshold is used.
View Article and Find Full Text PDFProkaryotic organisms preferentially utilize less energetically costly amino acids in highly expressed genes. Studies have shown that the proteome of Saccharomyces cerevisiae also exhibits this behavior, but only in broad terms. This study examines the question of metabolic efficiency as a proteome-shaping force at a finer scale, examining whether trends consistent with cost minimization as an evolutionary force are present independent of protein function and amino acid physicochemical property, and consistently with respect to amino acid biosynthetic costs.
View Article and Find Full Text PDFSTR-based DNA profiling is an exceptionally sensitive analytical technique that is often used to obtain results at the very limits of its sensitivity. The challenge of reliably distinguishing between signal and noise in such situations is one that has been rigorously addressed in numerous other analytical disciplines. However, an inability to determine accurately the height of electropherogram baselines has caused forensic DNA profiling laboratories to utilize alternative approaches.
View Article and Find Full Text PDFFor most prokaryotic organisms, amino acid biosynthesis represents a significant portion of their overall energy budget. The difference in the cost of synthesis between amino acids can be striking, differing by as much as 7-fold. Two prokaryotic organisms, Escherichia coli and Bacillus subtilis, have been shown to preferentially utilize less costly amino acids in highly expressed genes, indicating that parsimony in amino acid selection may confer a selective advantage for prokaryotes.
View Article and Find Full Text PDFSamples containing DNA from two or more individuals can be difficult to interpret. Even ascertaining the number of contributors can be challenging and associated uncertainties can have dramatic effects on the interpretation of testing results. Using an FBI genotypes dataset, containing complete genotype information from the 13 Combined DNA Index System (CODIS) loci for 959 individuals, all possible mixtures of three individuals were exhaustively and empirically computed.
View Article and Find Full Text PDFDNA profiling using STRs on the 310 and 3100 Genetic Analyzers routinely generates electropherograms that are analyzed with the GeneScan software available from the instrument's manufacturer, Applied Biosystems. Users have been able to choose from three different smoothing options that have been known to result in significant differences in the peak heights that are reported. Improvements in the underlying algorithm of the most recent version of the software also result in significant and somewhat predictable differences in peak height values.
View Article and Find Full Text PDF