Publications by authors named "Dan Dobrota"

The study focuses on harnessing recycled materials to create sustainable and efficient composites, addressing both environmental issues related to waste management and industrial requirements for materials with improved vibration damping properties. The research involves the analysis of the physico-mechanical properties of the obtained composites and the evaluation of their performance in practical applications. Composite materials were tested in terms of their tensile strength and vibration damping capabilities, considering stress-strain diagrams, vibration amplitudes, frequency response functions (FRFs) and vibration modes.

View Article and Find Full Text PDF

Machine learning offers significant potential for lung cancer detection, enabling early diagnosis and potentially improving patient outcomes. Feature extraction remains a crucial challenge in this domain. Combining the most relevant features can further enhance detection accuracy.

View Article and Find Full Text PDF

An overview of the significant innovations in photocatalysts for H development, photocatalyst selection criteria, and photocatalytic modifications to improve the photocatalytic activity was examined in this Review, as well as mechanisms and thermodynamics. A variety of semiconductors have been examined in a structured fashion, such as TiO-, g-CN-, graphene-, sulfide-, oxide-, nitride-, oxysulfide-, oxynitrides, and cocatalyst-based photocatalysts. The techniques for enhancing the compatibility of metals and nonmetals is discussed in order to boost photoactivity within visible light irradiation.

View Article and Find Full Text PDF

Background And Objective: In this present research paper, a mathematical model has been developed to study myocyte contraction in the human cardiac muscle, using the Land model. Different parts of the human heart with a focus on the composition of the myocyte cells have been explored numerically to enabling us to determine the interaction of various parameters in the heart muscle. The main objective of the work is to direct the study of the Land model, which has been exploited to simulate the contraction of real human myocytes.

View Article and Find Full Text PDF

This research presents a series of analyses related to the eco-design of polymer matrix composite parts, addressing various aspects of it. The main objective was to clarify the definition of ecological design, the benefits of its implementation and its importance in all stages of obtaining a product (design, manufacturing, recycling). Global environmental issues are presented, emphasizing the importance of adopting sustainable approaches in product design and manufacturing.

View Article and Find Full Text PDF

Heat transfer in water with the help of solar energy is an effective way to harness renewable energy and reduce reliance on non-renewable sources of energy. The utilization of turbulent promoters is an efficient solution to ameliorate the performance of heat exchangers (HE). The current work summarizes the experimental and numerical behaviour of HE reported in the literature, including the thermal examinations of HT and fluid flow characteristics with various turbulent promoters and tube arrangements.

View Article and Find Full Text PDF

Electronic gadgets have been designed to incorporating very small components such as microcontrollers, electronic chips, transistors, microprocessors, etc. These components are exceptionally heat sensitive and can be wrecked if heat is not released. As a result, the thermal control of such components is critical to their optimum performance and extended life.

View Article and Find Full Text PDF

Microchannel heat sink (MCHS) is a promising solution for removing the excess heat from an electronic component such as a microprocessor, electronic chip, etc. In order to increase the heat removal rate, the design of MCHS plays a vital role, and can avoid damaging heat-sensitive components. Therefore, the passage of the MCHS has been designed with a periodic right triangular groove in the flow passage.

View Article and Find Full Text PDF

New designs of the microchannel with a two-sided wedge shape at the base were studied numerically. Five different wedge angles ranging from 3° to 15° were incorporated into the microchannel design. Simulation of this novel microchannel was carried out using Computational Fluid Dynamics (CFD).

View Article and Find Full Text PDF

Artificial roughness on the absorber of the solar air heater (SAH) is considered to be the best passive technology for performance improvement. The roughened SAHs perform better in comparison to conventional SAHs under the same operational conditions, with some penalty of higher pumping power requirements. Thermo-hydraulic performance, based on effective efficiency, is much more appropriate to design roughened SAH, as it considers both the requirement of pumping power and useful heat gain.

View Article and Find Full Text PDF

The realization of products from materials with high properties generally involves very high energy consumption. Thus, in the research, it was considered to optimize the machining process by cutting of an aluminum bronze alloy, so as to obtain a reduction in energy consumption in correlation with the roughness of the machined surfaces. The research focused on the processing of a semi-finished product with a diameter of Ø = 20 mm made of aluminum bronze (C62300).

View Article and Find Full Text PDF

The processing of aluminum alloys in optimal conditions is a problem that has not yet been fully resolved. The research carried out so far has proposed various intelligent tools, but which cannot be used in the presence of cooling-lubricating fluids. The objective of the research carried out in the paper was to design intelligent tools that would allow a control of the vibrations of the tool tip and to determine a better roughness of the processed surfaces.

View Article and Find Full Text PDF

A 3D numerical simulation was conducted to study the transient development of temperature distribution in stationary gas tungsten arc welding with filler wire. Heat transfer to the filler wire and the workpiece was investigated with vertical (90°) and titled (70°) torches. Heat flux, current flux, and gas drag force were calculated from the steady-state simulation of the arc.

View Article and Find Full Text PDF

Machining processes through cutting are accompanied by dynamic phenomena that influence the quality of the processed surfaces. Thus, this research aimed to design, make, and use a tool with optimal functional geometry, which allowed a reduction of the dynamic phenomena that occur in the cutting process. In order to carry out the research, the process of cutting by front turning with transversal advance was taken into account.

View Article and Find Full Text PDF

Parts produced from PBT-GF30 (70% polybutylene terephthalate +30% fiberglass) are very often used in car construction, due to the properties of this material. The current trend is to make parts with a shape designed to be as complex as possible, to take over many functions in operation. During the research, a part that is a component of the structure of car safety systems, and that must be completely reliable in operation, was analyzed.

View Article and Find Full Text PDF

The ultrasonic welding of polymeric materials is one of the methods often used in practice. However, each couple of material subjected to ultrasonic welding is characterized by different values of technological parameters. Therefore, the main objective of the research presented in this paper is to optimize the parameters for the ultrasonic welding of two materials, namely PBT-GF30 (70% polybutylene terephthalate + 30% fiber glass) and expanded polytetrafluoroethylene (e-PTFE).

View Article and Find Full Text PDF

An important problem that arises at present refers to the increase in performances in the exploitation of the conveyor belts. Additionally, it is pursued to use some materials, which can be obtained by recycling rubber and PVC waste, in their structure. Thus, the research aimed at creating conveyor belts using materials obtained from the recycling of rubber and PVC waste.

View Article and Find Full Text PDF

A novel hydrogel composite based on gellan gum and graphene oxide (GG/GO) was synthesized, characterized and tested for sorption capacity in this work. The microstructural, thermogravimetric and spectroscopic analysis confirmed the formation of the GG/GO composite. Comparative batch sorption experiments revealed a sorption capacity of the GG/GO composite for Zn (II) ions of approximately 2.

View Article and Find Full Text PDF

A very important issue that needs to be solved as simply and correctly as possible is how to establish the thermal performance of phase-changing materials (PCM). The undertaken researches have analyzed the values of the thermal performances of the PCM taking into account the method of finite elements and the experimental research, respectively, based on a modern measurement system that was designed and implemented. Butyl stearate which has been encapsulated through complex coacervation in polymethyl methacrylate has been used as a PCM.

View Article and Find Full Text PDF

Conveyor belts of special importance must have superior mechanical characteristics. The joining by vulcanization of the conveyor belts allows to obtain superior performances, but it has been found that at the vulcanizing joint of the conveyor belts, there is a "bell"-type defect. This type of defect can cause the quick removal of the conveyor belts from use; thus, within this paper, we realized the constructive optimization of vulcanization installations using the finite element method (FEM).

View Article and Find Full Text PDF

Addressing the problem of reconditioning large parts is of particular importance, due to their value and to the fact that the technologies for their reconditioning are very complex. The tools used to refine regenerated rubber which measure 660 mm in diameter and 2130 mm in length suffer from a rather fast dimensional wear. Within this research, the authors looked for a welding reconditioning procedure that would allow a very good adhesion between the deposited material layer and the base material.

View Article and Find Full Text PDF