Two novel compounds, pyridopyrimidines (1) and naphthyridines (2) were identified as potent inhibitors of bacterial NAD(+)-dependent DNA ligase (Lig) A in a fragment screening. SAR was guided by molecular modeling and X-ray crystallography. It was observed that the diaminonitrile pharmacophore made a key interaction with the ligase enzyme, specifically residues Glu114, Lys291, and Leu117.
View Article and Find Full Text PDFPyrimidine compounds were identified as inhibitors of DNA topoisomerase IV through high-throughput screening. This study was designed to exemplify the in vitro activity of the pyrimidines against Gram-positive and Gram-negative microorganisms, to reveal the mode of action of these compounds and to demonstrate their in vivo efficacy. Frequencies of resistance to pyrimidines among Staphylococcus aureus and Streptococcus pneumoniae were <10(-10) at four times their minimum inhibitory concentrations (MICs).
View Article and Find Full Text PDFOxazolidinones represent a new and promising class of antibacterial agents. Current research in this area is mainly concentrated on improving the safety profile and the antibacterial spectrum. Oxazolidinones bearing a (pyridin-3-yl)phenyl moiety (e.
View Article and Find Full Text PDF