Publications by authors named "Dan Bolser"

Background: Phenome-wide association studies (PheWASs) have been conducted on Asian populations, including Koreans, but many were based on chip or exome genotyping data. Such studies have limitations regarding whole genome-wide association analysis, making it crucial to have genome-to-phenome association information with the largest possible whole genome and matched phenome data to conduct further population-genome studies and develop health care services based on population genomics.

Results: Here, we present 4,157 whole genome sequences (Korea4K) coupled with 107 health check-up parameters as the largest genomic resource of the Korean Genome Project.

View Article and Find Full Text PDF

The DNA Features pipeline is the analysis pipeline at EMBL-EBI that annotates repeat elements, including transposable elements. With Ensembl's goal to stay at the cutting edge of genome annotation, we proved that this pipeline needed an update. We then created a new analysis that allowed the Ensembl database to store the repeat classification from the PGSB repeat classification (Recat).

View Article and Find Full Text PDF

We present LT1, the first high-quality human reference genome from the Baltic States. LT1 is a female human reference genome assembly, constructed using 57× nanopore long reads and polished using 47× short paired-end reads. We utilized 72 GB of Hi-C chromosomal mapping data for scaffolding, to maximize assembly contiguity and accuracy.

View Article and Find Full Text PDF

Cymbidium goeringii, commonly known as the spring orchid, has long been favoured for horticultural purposes in Asian countries. It is a popular orchid with much demand for improvement and development for its valuable varieties. Until now, its reference genome has not been published despite its popularity and conservation efforts.

View Article and Find Full Text PDF

Coronavirus disease, COVID-19 (coronavirus disease 2019), caused by SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2), has a higher case fatality rate in European countries than in others, especially East Asian ones. One potential explanation for this regional difference is the diversity of the viral infection efficiency. Here, we analyzed the allele frequencies of a nonsynonymous variant rs12329760 (V197M) in the gene, a key enzyme essential for viral infection and found a significant association between the COVID-19 case fatality rate and the V197M allele frequencies, using over 200,000 present-day and ancient genomic samples.

View Article and Find Full Text PDF

Background: DNBSEQ-T7 is a new whole-genome sequencer developed by Complete Genomics and MGI using DNA nanoball and combinatorial probe anchor synthesis technologies to generate short reads at a very large scale-up to 60 human genomes per day. However, it has not been objectively and systematically compared against Illumina short-read sequencers.

Findings: By using the same KOREF sample, the Korean Reference Genome, we have compared 7 sequencing platforms including BGISEQ-500, DNBSEQ-T7, HiSeq2000, HiSeq2500, HiSeq4000, HiSeqX10, and NovaSeq6000.

View Article and Find Full Text PDF

The Welfare Genome Project (WGP) provided 1,000 healthy Korean volunteers with detailed genetic and health reports to test the social perception of integrating personal genetic and healthcare data at a large-scale. WGP was launched in 2016 in the Ulsan Metropolitan City as the first large-scale genome project with public participation in Korea. The project produced a set of genetic materials, genotype information, clinical data, and lifestyle survey answers from participants aged 20-96.

View Article and Find Full Text PDF

We present the initial phase of the Korean Genome Project (Korea1K), including 1094 whole genomes (sequenced at an average depth of 31×), along with data of 79 quantitative clinical traits. We identified 39 million single-nucleotide variants and indels of which half were singleton or doubleton and detected Korean-specific patterns based on several types of genomic variations. A genome-wide association study illustrated the power of whole-genome sequences for analyzing clinical traits, identifying nine more significant candidate alleles than previously reported from the same linkage disequilibrium blocks.

View Article and Find Full Text PDF

Background: Early diagnosis and continuous monitoring are necessary for an efficient management of cervical cancers (CC). Liquid biopsy, such as detecting circulating tumor DNA (ctDNA) from blood, is a simple, non-invasive method for testing and monitoring cancer markers. However, tumor-specific alterations in ctDNA have not been extensively investigated or compared to other circulating biomarkers in the diagnosis and monitoring of the CC.

View Article and Find Full Text PDF

We provide a Kazakh whole genome sequence (MJS) and analyses with the largest comparative Kazakh genomic data available to date. We found 102,240 novel SNVs and a high level of heterozygosity. ADMIXTURE analysis confirmed a significant proportion of variations in this individual coming from all continents except Africa and Oceania.

View Article and Find Full Text PDF
Article Synopsis
  • Ensembl Genomes is an online resource that offers genome-scale data specifically for non-vertebrate species, complementing the vertebrate data available through the Ensembl project.
  • The resource provides a consistent interface for accessing various genomic data, including genome sequences, gene models, and genetic variations, which is updated four times a year.
  • Recent developments have focused on better organizing orthologues and paralogues, enhancing gene expression data, particularly in plants, and strengthening integration with the Ensembl project to manage the growing amount of genomic data.
View Article and Find Full Text PDF

Ensembl Genomes (http://www.ensemblgenomes.org) is an integrating resource for genome-scale data from non-vertebrate species, complementing the resources for vertebrate genomics developed in the Ensembl project (http://www.

View Article and Find Full Text PDF

Advances in genome sequencing and assembly technologies are generating many high-quality genome sequences, but assemblies of large, repeat-rich polyploid genomes, such as that of bread wheat, remain fragmented and incomplete. We have generated a new wheat whole-genome shotgun sequence assembly using a combination of optimized data types and an assembly algorithm designed to deal with large and complex genomes. The new assembly represents >78% of the genome with a scaffold N50 of 88.

View Article and Find Full Text PDF

Ensembl Plants ( http://plants.ensembl.org ) is an integrative resource presenting genome-scale information for 39 sequenced plant species.

View Article and Find Full Text PDF

Life sciences are yielding huge data sets that underpin scientific discoveries fundamental to improvement in human health, agriculture and the environment. In support of these discoveries, a plethora of databases and tools are deployed, in technically complex and diverse implementations, across a spectrum of scientific disciplines. The corpus of documentation of these resources is fragmented across the Web, with much redundancy, and has lacked a common standard of information.

View Article and Find Full Text PDF

Ensembl Plants ( http://plants.ensembl.org ) is an integrative resource presenting genome-scale information for a growing number of sequenced plant species (currently 33).

View Article and Find Full Text PDF

Recent developments in DNA sequencing have enabled the large and complex genomes of many crop species to be determined for the first time, even those previously intractable due to their polyploid nature. Indeed, over the course of the last 2 years, the genome sequences of several commercially important cereals, notably barley and bread wheat, have become available, as well as those of related wild species. While still incomplete, comparison with other, more completely assembled species suggests that coverage of genic regions is likely to be high.

View Article and Find Full Text PDF

Background: Triticum monococcum (2n) is a close ancestor of T. urartu, the A-genome progenitor of cultivated hexaploid wheat, and is therefore a useful model for the study of components regulating photomorphogenesis in diploid wheat. In order to develop genetic and genomic resources for such a study, we constructed genome-wide transcriptomes of two Triticum monococcum subspecies, the wild winter wheat T.

View Article and Find Full Text PDF

Gramene (http://www.gramene.org) is a curated online resource for comparative functional genomics in crops and model plant species, currently hosting 27 fully and 10 partially sequenced reference genomes in its build number 38.

View Article and Find Full Text PDF

Next-generation sequencing (NGS) is increasingly being adopted as the backbone of biomedical research. With the commercialization of various affordable desktop sequencers, NGS will be reached by increasing numbers of cellular and molecular biologists, necessitating community consensus on bioinformatics protocols to tackle the exponential increase in quantity of sequence data. The current resources for NGS informatics are extremely fragmented.

View Article and Find Full Text PDF

Motivation: Advancing the search, publication and integration of bioinformatics tools and resources demands consistent machine-understandable descriptions. A comprehensive ontology allowing such descriptions is therefore required.

Results: EDAM is an ontology of bioinformatics operations (tool or workflow functions), types of data and identifiers, application domains and data formats.

View Article and Find Full Text PDF

Bread wheat (Triticum aestivum) is a globally important crop, accounting for 20 per cent of the calories consumed by humans. Major efforts are underway worldwide to increase wheat production by extending genetic diversity and analysing key traits, and genomic resources can accelerate progress. But so far the very large size and polyploid complexity of the bread wheat genome have been substantial barriers to genome analysis.

View Article and Find Full Text PDF

Background: The potato genome sequence derived from the Solanum tuberosum Group Phureja clone DM1-3 516 R44 provides unparalleled insight into the genome composition and organisation of this important crop. A key class of genes that comprises the vast majority of plant resistance (R) genes contains a nucleotide-binding and leucine-rich repeat domain, and is collectively known as NB-LRRs.

Results: As part of an effort to accelerate the process of functional R gene isolation, we performed an amino acid motif based search of the annotated potato genome and identified 438 NB-LRR type genes among the ~39,000 potato gene models.

View Article and Find Full Text PDF

Biology is generating more data than ever. As a result, there is an ever increasing number of publicly available databases that analyse, integrate and summarize the available data, providing an invaluable resource for the biological community. As this trend continues, there is a pressing need to organize, catalogue and rate these resources, so that the information they contain can be most effectively exploited.

View Article and Find Full Text PDF

Recent advances in sequencing technology have created unprecedented opportunities for biological research. However, the increasing throughput of these technologies has created many challenges for data management and analysis. As the demand for sophisticated analyses increases, the development time of software and algorithms is outpacing the speed of traditional publication.

View Article and Find Full Text PDF