Large trees in plantations generally produce more wood per unit of resource use than small trees. Two processes may account for this pattern: greater photosynthetic resource use efficiency or greater partitioning of carbon to wood production. We estimated gross primary production (GPP) at the individual scale by combining transpiration with photosynthetic water-use efficiency of Eucalyptus trees.
View Article and Find Full Text PDFReduced stomatal conductance is a common plant response to rising atmospheric CO and increases water use efficiency (W). At the leaf-scale, W depends on water and nitrogen availability in addition to atmospheric CO. In hydroclimate models W is a key driver of rainfall, droughts, and streamflow extremes.
View Article and Find Full Text PDFSilviculture focuses on establishing forest stand conditions that improve the stand increment. Knowledge about the efficiency of an individual tree is essential to be able to establish stand structures that increase tree resource use efficiency and stand level production. Efficiency is often expressed as stem growth per unit leaf area (leaf area efficiency), or per unit of light absorbed (light use efficiency).
View Article and Find Full Text PDFGenetic variation and environmental heterogeneity fundamentally shape the interactions between plants of the same species. According to the resource partitioning hypothesis, competition between neighbors intensifies as their similarity increases. Such competition may change in response to increasing supplies of limiting resources.
View Article and Find Full Text PDFThe release of carbon as CO2 from belowground processes accounts for about 70% of total ecosystem respiration. Insights about factors controlling soil CO2 efflux are constrained by the challenge of apportioning sources of CO2 between autotrophic tree roots (and mycorrhizal fungi) and heterotrophic microorganisms. In some temperate conifer forests, the reduction in soil CO2 efflux after girdling (phloem removal) has been used to separate these sources.
View Article and Find Full Text PDFThere is little evidence that nitrogen (N) cycling in the highly weathered, low-phosphorus (P), acidic soils found in Southern Hemisphere continents will differ greatly from that in North America and Europe. Evidence from the 'south' shows: the similarity in forms and temporal patterns in losses of N from different land uses; that the C:N ratios of the forest floor/litter layer from different continents are strongly predictive of a range of processes on a global scale; that generalizations based on Northern Hemisphere experience of the impact of N additions to 'P-limited' ecosystems are likely to fail for southern ecosystems where anatomical and physiological adaptation of native plants to low-P soils makes questionable the concept of 'P-limitation'; that the greatest threats in the 'south' are probably changes in land use that may greatly increase N inputs and turnover; that localized increases in N inputs produce similar effects to those seen in the 'north'.
View Article and Find Full Text PDFOnly a small fraction of the carbon (C) allocated belowground by trees is retained by soils in long-lived, decay-resistant forms, yet because of the large magnitude of terrestrial primary productivity, even small changes in C allocation or retention can alter terrestrial C storage. The humid tropics exert a disproportionately large influence over terrestrial C storage, but C allocation and belowground retention in these ecosystems remain poorly quantified. Using mass balance and 13C isotope methods, we examined the effects of afforestation and fertilization, two land-use changes of large-scale importance, on belowground C cycling at a humid tropical site in Hawaii.
View Article and Find Full Text PDFPatterns of nitrogen (N) accumulation and turnover in riparian systems in semi-arid regions are poorly understood, particularly in those ecosystems that lack substantial inputs from nitrogen fixing vegetation. We investigated sources and fluxes of N in chronosequences of riparian forests along the regulated Green River and the free-flowing Yampa River in semi-arid northwestern Colorado. Both rivers lack significant inputs from N-fixing vegetation.
View Article and Find Full Text PDFThe feedback between plant litterfall and nutrient cycling processes plays a major role in the regulation of nutrient availability and net primary production in terrestrial ecosystems. While several studies have examined site-specific feedbacks between litter chemistry and nitrogen (N) availability, little is known about the interaction between climate, litter chemistry, and N availability across different ecosystems. We assembled data from several studies spanning a wide range of vegetation, soils, and climatic regimes to examine the relationship between aboveground litter chemistry and annual net N mineralization.
View Article and Find Full Text PDFWe examined the 30-yr cumulative effects of prescribed fires at intervals of 1, 2, 3, and 4 yr in a loblolly and longleaf pine forest in the Coastal Plain of South Carolina. The fine fraction of the forest floor (Oe + Oa horizons) contained much more carbon and nitrogen per unit area in the control plots (1.7 and 0.
View Article and Find Full Text PDF