Healthy soils provide valuable ecosystem services (ES), but soil contamination can inhibit essential soil functions (SF) and pose risks to human health and the environment. A key advantage of using gentle remediation options (GRO) is the potential for multifunctionality: to both manage risks and improve soil functionality. In this study, an accessible, scientific method for soil health assessment directed towards practitioners and decision-makers in contaminated land management was developed and demonstrated for a field experiment at a DDX-contaminated tree nursery site in Sweden to evaluate the relative effects of GRO on soil health (i.
View Article and Find Full Text PDFPhytoextraction, utilizing plants to remove soil contaminants, is a promising approach for environmental remediation but its application is often limited due to the long time requirements. This study aims to develop simplified and user-friendly probabilistic models to estimate the time required for phytoextraction of contaminants while considering uncertainties. More specifically we: i) developed probabilistic models for time estimation, ii) applied these models using site-specific data from a field experiment testing pumpkin (Cucurbita pepo ssp.
View Article and Find Full Text PDFTreatment of environmental media contaminated with per- and polyfluoroalkyl substances (PFAS) is crucial to mitigate mounting health risks associated with exposure. Colloidal activated carbon (CAC) has shown promise in treating contaminated soils, but understanding the interaction among PFAS during sorption is necessary for optimal remediation. This study investigated the extent to which PFAS of varying chain lengths and functional groups compete for sorption to CAC.
View Article and Find Full Text PDFDeveloping effective remediation methods for per- and polyfluoroalkyl substance (PFAS)-contaminated soils is a substantial step towards counteracting their widespread occurrence and protecting our ecosystems and drinking water sources. Stabilisation of PFAS in the subsurface using colloidal activated carbon (CAC) is an innovative, yet promising technique, requiring better understanding. In this study, dynamic soil column tests were used to assess the retardation of 10 classical perfluoroalkyl acids (PFAAs) (C-C perfluoroalkyl carboxylic acids (PFCAs) and C, C, C perfluoroalkane sulfonates (PFSAs)) as well as two alternative PFAS (6:2 and 8:2 fluorotelomer sulfonates) using CAC at 0.
View Article and Find Full Text PDFExtraction of soil samples with dilute CaCl solution in a routinely performed batch test has potential to be used in site-specific assessment of ecotoxicological risks at metal-contaminated sites. Soil extracts could potentially give a measure of the concentration of bioavailable metals in the soil solution, thereby including effects of soil properties and contaminant "aging." We explored the possibility of using a 0.
View Article and Find Full Text PDFContaminants in the soil may threaten soil functions (SFs) and, in turn, hinder the delivery of ecosystem services (ES). A framework for ecological risk assessments (ERAs) within the APPLICERA - APPLICable site-specific Environmental Risk Assessment research project promotes assessments that consider other soil quality parameters than only contaminant concentrations. The developed framework is: (i) able to differentiate the effects of contamination on SFs from the effects of other soil qualities essential for soil biota; and (ii) provides a robust basis for improved soil quality management in remediation projects.
View Article and Find Full Text PDFThe global problem of contamination of drinking water sources and the aquatic environment with per- and polyfluoroalkyl substances (PFASs) originating from highly contaminated soils is addressed in this study. For the first time, a colloidal activated carbon (AC) product (PlumeStop®) was systematically assessed for PFASs stabilization in soil. Colloidal (particle size 0.
View Article and Find Full Text PDFAccurate prediction of the sorption of perfluoroalkyl substances (PFASs) in soils is essential for environmental risk assessment. We investigated the effect of solution pH and calculated soil organic matter (SOM) net charge on the sorption of 14 PFASs onto an organic soil as a function of pH and added concentrations of Al, Ca and Na. Often, the organic C-normalized partitioning coefficients (K) showed a negative relationship to both pH (Δlog K/ΔpH = -0.
View Article and Find Full Text PDFThe influence of natural organic matter (NOM) on the solid-phase extraction (SPE) efficiency was investigated for legacy and emerging flame retardants (FRs; n=26) in surface water. Three different groups of FRs were analyzed: polybrominated diphenyl ethers (PBDEs), halogenated flame retardants (HFRs), and organophosphorus flame retardants (OPFRs). In addition, five sorbents (Amberlite XAD-2, Amberlite IRA-743, Oasis HLB, Chromabond HR-P, and Chromabond HR-X) were evaluated for the extraction of FRs (n=33) in water, of which Oasis HLB eluted with dichloromethane and acetone:n-hexane (1:1, v/v) provided the highest overall recoveries.
View Article and Find Full Text PDFDifferent methods to quantify soil porewater concentrations of contaminants will provide different types of information. Passive sampling measurements give freely dissolved porewater concentrations (C), while leaching tests provide information on the mobile concentration (C), including contaminants associated with dissolved organic carbon (DOC) and particles/colloids in the porewater. This study presents a novel combination of these two measurements, to study the sorption and mobility of polycyclic aromatic compounds (PACs) to DOC and particulate organic carbon (POC) in 10 historically contaminated soils.
View Article and Find Full Text PDFJ Environ Sci Health A Tox Hazard Subst Environ Eng
January 2016
The increasing use of silver nanoparticles (AgNPs) in consumer products triggers the need for investigations that improve the understanding of their chemical transformations upon environmental entry. Such knowledge provides crucial information for toxicological studies and risk assessments. Interactions with the soil compartment need to be explored as there are evident risks of the dispersion of both AgNPs and of released Ag ions/complexes present in wastewater-treated sludge that is distributed onto agricultural land.
View Article and Find Full Text PDFOxygenated polycyclic aromatic hydrocarbons (oxy-PAHs) are a class of ubiquitously occurring pollutants of which little is known. They can be co-emitted with PAHs or formed from PAHs in the environment. The environmental fate and risk of oxy-PAHs are difficult to assess due to a lack of methods to quantify their pore water concentrations.
View Article and Find Full Text PDFSoil quality standards are based on partitioning and toxicity data for laboratory-spiked reference soils, instead of real world, historically contaminated soils, which would be more representative. Here 21 diverse historically contaminated soils from Sweden, Belgium, and France were obtained, and the soil-porewater partitioning along with the bioaccumulation in exposed worms (Enchytraeus crypticus) of native polycyclic aromatic compounds (PACs) were quantified. The native PACs investigated were polycyclic aromatic hydrocarbons (PAHs) and, for the first time to be included in such a study, oxygenated-PAHs (oxy-PAHs) and nitrogen containing heterocyclic PACs (N-PACs).
View Article and Find Full Text PDFSoil tests have been widely developed to predict trace metal uptake by plants. The prediction of metal toxicity, however, has rarely been tested. The present study was set up to compare 8 established soil tests for diagnosing phytotoxicity in contaminated soils.
View Article and Find Full Text PDFChromium is a common soil contaminant, and it often exists as chromium(III). However, limited information exists on the coordination chemistry and stability of chromium(III) complexes with natural organic matter (NOM). Here, the complexation of chromium(III) to mor layer material and to Suwannee River Fulvic Acid (SRFA) was investigated using EXAFS spectroscopy and batch experiments.
View Article and Find Full Text PDFIron(III) competes with trace metals for binding sites on organic ligands. We used X-ray absorption fine structure (EXAFS) spectroscopy to determine the binding mode and oxidation state of iron in solutions initially containing only iron(III) and fulvic acid at pHs 2 and 4. EXAFS spectra were recorded at different times after sample preparation.
View Article and Find Full Text PDFInformation on Cu speciation in municipal solid waste incineration (MSWI) bottom ash leachate is needed for Cu leaching predictions and toxicity estimates. The complexation of Cu with dissolved organic matter (DOM) in leachates from a stored MSWI bottom ash was studied potentiometrically using a Cu-ion selective electrode. More than 95% of the copper was bound to DOM in the hydrophilic fraction of the leachate, indicating that the hydrophilic acids contribute to Cu complex formation.
View Article and Find Full Text PDFThe complexation of iron(III) to soil organic matter is important for the binding of trace metals in natural environments because of competition effects. In this study, we used extended X-ray absorption fine structure (EXAFS) spectroscopy to characterize the binding mode for iron(III) in two soil samples from organic mor layers, one of which was also treated with iron(III). In most cases the EXAFS spectra had three significant contributions, inner-core Fe-O/N interactions at about 2.
View Article and Find Full Text PDFThe overall objective of this paper is to present an extensive set of data for corrosion-induced copper dispersion and its environmental interaction with solid surfaces in the near vicinity of buildings. Copper dispersion is discussed in terms of total copper flows, copper speciation and bioavailability at the immediate release situation, and its changes during transport from source to recipient. Presented results are based on extensive field exposures (eight years) at an urban site, laboratory investigations of the runoff process, published field data, generated predictive site-specific runoff rate models, and reactivity investigations toward various natural and manmade surfaces, such as those in soil, limestone, and concrete.
View Article and Find Full Text PDFThis paper comprises data from an extensive cross-disciplinary research project aiming to elucidate the environmental fate of corrosion-induced zinc release from external structures. It includes an exposure assessment that provide long-term runoff rates, concentrations and chemical speciation of zinc, from 14 zinc-based materials exposed during 5 years in Stockholm, Sweden, and an effect assessment including bioavailability and ecotoxicity measurements, both at the immediate release situation and after soil interaction. Runoff rates of total zinc ranged from 0.
View Article and Find Full Text PDFModels are available for simulations of proton dissociation and cation binding by natural organic matter; two examples are the NICA-Donnan and Stockholm Humic (SHM) models. To model proton and metal binding, it is necessary to properly account for the ionic strength dependence of proton dissociation. In previous applications of the models for soils itwas assumed that the electrostatic interactions for solid-phase humic substances were the same as in solution; this assumption was recently challenged.
View Article and Find Full Text PDF