N-Nitrosamines (also referred to as nitrosamines) are a class of substances, many of which are highly potent mutagenic agents which have been classified as probable human carcinogens. Nitrosamine impurities have been a concern within the pharmaceutical industry and by regulatory authorities worldwide since June 2018, when regulators were informed of the presence of N-nitrosodimethylamine (NDMA) in the angiotensin-II receptor blocker (ARB) medicine, valsartan. Since that time, regulatory authorities have collaborated to share information and knowledge on issues related to nitrosamines with a goal of promoting convergence on technical issues and reducing and mitigating patient exposure to harmful nitrosamine impurities in human drug products.
View Article and Find Full Text PDFBackground: Imagining ways to prevent or treat glioblastoma (GBM) has been hindered by a lack of understanding of its pathogenesis. Although overexpression of platelet derived growth factor with two A-chains (PDGF-AA) may be an early event, critical details of the core biology of GBM are lacking. For example, existing PDGF-driven models replicate its microscopic appearance, but not its genomic architecture.
View Article and Find Full Text PDFBioorg Med Chem Lett
August 2013
The discovery and potency optimization of a series of 7-aminofuro[2,3-c]pyridine inhibitors of TAK1 is described. Micromolar hits taken from high-throughput screening were optimized for biochemical and cellular mechanistic potency to ~10nM, as exemplified by compound 12az. Application of structure-based drug design aided by co-crystal structures of TAK1 with inhibitors significantly shortened the number of iterations required for the optimization.
View Article and Find Full Text PDFStructure-guided design led to the discovery of novel chemical scaffolds for B-Raf inhibitors. Both type I and type II kinase inhibitors have been explored and lead compounds with good potency and excellent selectivity have been identified.
View Article and Find Full Text PDFNovel indazolylpyrazolo[1,5-a]pyrimidine analogues have been prepared and found to be extremely potent type I B-Raf inhibitors. The lead compound shows good selectivity against a panel of 60 kinases, possesses a desirable pharmacokinetic profile, and demonstrates excellent in vivo antitumor efficacy in B-Raf mutant xenograft models.
View Article and Find Full Text PDFA series of tricyclic anilinopyrimidines were synthesized and evaluated as IKKbeta inhibitors. Several analogues, including tricyclic phenyl (10, 18a, 18c, 18d, and 18j) and thienyl (26 and 28) derivatives were shown to have good in vitro enzyme potency and excellent cellular activity. Pharmaceutical profiling of a select group of tricyclic compounds compared to the non-tricyclic analogues suggested that in some cases, the improved cellular activity may be due to increased clog P and permeability.
View Article and Find Full Text PDFIt was found that solvent hydrogen bond basicity (SHBB) significantly affects the regiochemistry of the S(N)Ar reaction between secondary amines and activated polyfluoroarenes. A plausible mechanism involving a six-membered transition state is invoked for the formation of an ortho-substituted isomer, which is likely organized by a hydrogen bond. Evidence for this hypothesis is presented, and a regioselective amination reaction of activated polyfluoroarenes has been developed.
View Article and Find Full Text PDFBioorg Med Chem Lett
December 2009
Our continued effort towards optimization of the pyrazolo[1,5-a]pyrimidine scaffold as B-Raf kinase inhibitors is described. Structure guided design was utilized to introduce kinase hinge region interacting groups in the 2-position of the scaffold. This strategy led to the identification of lead compound 9 with enhanced enzyme and cellular potency, while maintaining good selectivity over a number of kinases.
View Article and Find Full Text PDFA novel series of pyrazolo[1,5-a]pyrimidines bearing a 3-hydroxyphenyl group at C(3) and substituted tropanes at C(7) have been identified as potent B-Raf inhibitors. Exploration of alternative functional groups as a replacement for the C(3) phenol demonstrated indazole to be an effective isostere. Several compounds possessing substituted indazole residues, such as 4e, 4p, and 4r, potently inhibited cell proliferation at submicromolar concentrations in the A375 and WM266 cell lines, and the latter two compounds also exhibited good therapeutic indices in cells.
View Article and Find Full Text PDFBioorg Med Chem Lett
December 2009
As part of our research effort to discover B-Raf kinase inhibitors, we prepared a series of C-3 substituted N-(3-(pyrazolo[1,5-a]pyrimidin-7-yl)phenyl)-3-(trifluoromethyl)benzamides. X-ray crystallography studies revealed that one of the more potent inhibitors (10n) bound to B-Raf kinase without forming a hinge-binding hydrogen bond. With basic amine residues appended to C-3 aryl residues, cellular activity and solubility were enhanced over previously described compounds of this class.
View Article and Find Full Text PDFBioorg Med Chem Lett
December 2009
A series of pyrazolo[1,5-alpha]pyrimidine analogs has been prepared and found to be potent and selective B-Raf inhibitors. Molecular modeling suggests they bind to the active conformation of the enzyme.
View Article and Find Full Text PDFInsulin-like growth factor receptor (IGF-1R) is a growth factor receptor tyrosine kinase that acts as a critical mediator of cell proliferation and survival. Inhibitors of this receptor are believed to provide a new target in cancer therapy. We previously reported an isoquinolinedione series of IGF-1R inhibitors.
View Article and Find Full Text PDFA series of substituted 7-alkenyl 4[3-chloro-4-(1-methyl-1H-imidazol-2-ylsulfanyl)]anilino-3-quinolinecarbonitrile analogs were synthesized and evaluated as MEK1 kinase inhibitors. The synthetic details, structure-activity relationships, biological activity, and selected oral exposure studies of these analogs are described. From these studies, compound 5m was chosen as a strong candidate for further evaluation.
View Article and Find Full Text PDFBackground: Agents for the treatment of HIV-1-infected patients with resistance to current antiretroviral (ART) drugs are needed.
Methods: TMC114-C202 was a randomized, partially blinded, dose-finding study in treatment-experienced HIV-1-infected patients with one or more primary protease inhibitor (PI) mutations and HIV-1 RNA > 1000 copies/ml. Patients were randomized to receive one of four TMC114 doses given with ritonavir (TMC114/r) or investigator-selected control PI drug(s) (CPI); all received an optimized background regimen.
It has been previously reported that appropriately substituted 4-anilinoquinoline-3-carbonitriles are potent inhibitors of Src kinase, with biological activity in vitro and in vivo. Structural modifications to these compounds have been explored, providing the 4-anilinobenzo[g]quinoline-3-carbonitriles as a series with enhanced Src inhibitory properties. The synthesis and structure-activity relationships of these 4-anilino-7,8-dialkoxybenzo[g]quinoline-3-carbonitriles are presented here.
View Article and Find Full Text PDFA high-throughput screen for Ras-mitogen-activated protein kinase (MAPK) signaling inhibitors identified two series (class 1 and 2) of substituted 4-anilino-3-quinolinecarbonitriles as potent (IC(50)s <10 nmol/L) mitogen-activated protein/extracellular signal-regulated kinase 1 (MEK1) kinase inhibitors. These compounds had cyanoquinoline cores, but differed in their respective aniline groups [1a, 1b: 4-phenoxyphenylaniline; 2a, 2b: 3-chloro-4-(1-methylimidazol-2-sulfanyl)aniline]. These compounds were competitive inhibitors of ATP binding by MEK1 kinase, and they had minimal or no effect on Raf, epidermal growth factor receptor (EGFR), Akt, cyclin-dependent kinase 4 (CDK4), or MK2 kinases at concentrations >100-fold higher than those that inhibited MEK1 kinase.
View Article and Find Full Text PDF4-[3-Chloro-4-(1-methyl-1H-imidazol-2-ylsulfanyl)]anilino-6,7-diethoxy-3-quinolinecarbonitrile (3) was identified as a MEK1 kinase inhibitor with exceptional activity against LoVo cells. The structure-activity relationships of the C-4 aniline substituents were explored, and water-solubilizing groups were added at the C-7 position to improve physical properties. Secondary cellular assays revealed that a compound possessing the appropriate aniline substituents inhibited MEK1 as well as MAPK phosphorylation, thereby acting as a dual inhibitor of the Ras-MAPK signaling cascade.
View Article and Find Full Text PDFBioorg Med Chem Lett
October 2002
A series of substituted 4-anilino-7-phenyl-3-quinolinecarbonitriles has been prepared as Src kinase inhibitors. Optimal activity is observed with compounds that have basic amines attached via the para position of the 7-phenyl ring, and a hydrogen atom at the C-6 position. The best compounds are low nanomolar inhibitors of Src kinase, and have potent activity against Src-transformed fibroblast cells.
View Article and Find Full Text PDFBioorg Med Chem Lett
October 2002
A series of 8-anilinoimidazo[4,5-g]quinoline-7-carbonitriles was synthesized and evaluated as Src kinase inhibitors. Several aniline substituents were surveyed, as well as water-solubilizing groups at the C-2 and N-3 positions. Potent Src inhibitors were identified, with N-3 providing the best position for an additional water-solubilizing group.
View Article and Find Full Text PDF