The survival strategies of infectious organisms have inspired many therapeutics over the years. Indeed the advent of oncolytic viruses (OVs) exploits the uncontrolled replication of cancer cells for production of their progeny resulting in a cancer-targeting treatment that leaves healthy cells unharmed. Their success against inaccessible tumors however, is highly variable due to inadequate tumor targeting following systemic administration.
View Article and Find Full Text PDFMachine learning techniques are commonly used to model complex relationships but implementations on digital hardware are relatively inefficient due to poor matching between conventional computer architectures and the structures of the algorithms they are required to simulate. Neuromorphic devices, and in particular reservoir computing architectures, utilize the inherent properties of physical systems to implement machine learning algorithms and so have the potential to be much more efficient. In this work, we demonstrate that the dynamics of individual domain walls in magnetic nanowires are suitable for implementing the reservoir computing paradigm in hardware.
View Article and Find Full Text PDFCatalytically driven electrochemical hydrogen evolution reaction (HER) of monolayered molybdenum disulfide (MoS2) is usually highly suppressed by the scarcity of edges and low electrical conductivity. Here, we show how the catalytic performance of MoS2 monolayers can be improved dramatically by catalyst size reduction and surface sulfur (S) depletion. Monolayered MoS2 nanocrystals (NCs) (2-25 nm) produced via exfoliating and disintegrating their bulk counterparts showed improved catalysis rates over monolayer sheets because of their increased edge ratios and metallicity.
View Article and Find Full Text PDFA high yield (>36 wt %) method has been developed of preparing monolayered tungsten dichalcogenide (WS2) quantum dots (QDs) with lateral size ∼8-15 nm from multilayered WS2 flakes. The monolayered WS2 QDs are, like monolayered WS2 sheets, direct semiconductors despite the flake precursors being an indirect semiconductor. However, the QDs have a significantly larger direct transition energy (3.
View Article and Find Full Text PDFMonolayered boron nitride (BN) quantum dots (QDs; lateral size ≈10 nm) are fabricated using a novel method. Unlike monolayered BN sheets, these BN QDs exhibit blue-green luminescence due to defects formed during preparation. This optical behavior adds significant functionality to a material that is already receiving much attention.
View Article and Find Full Text PDFPlanar magnetic nanowires have been vital to the development of spintronic technology. They provide an unparalleled combination of magnetic reconfigurability, controllability, and scalability, which has helped to realize such applications as racetrack memory and novel logic gates. Microfabricated atom optics benefit from all of these properties, and we present the first demonstration of the amalgamation of spintronic technology with ultracold atoms.
View Article and Find Full Text PDFWe have found that almost all paper documents, plastic cards and product packaging contain a unique physical identity code formed from microscopic imperfections in the surface. This covert 'fingerprint' is intrinsic and virtually impossible to modify controllably. It can be rapidly read using a low-cost portable laser scanner.
View Article and Find Full Text PDFAs fabrication technology pushes the dimensions of ferromagnetic structures into the nanoscale, understanding the magnetization processes of these structures is of fundamental interest, and key to future applications in hard disk drives, magnetic random access memory and other 'spintronic' devices. Measurements on elongated magnetic nanostructures highlighted the importance of nucleation and propagation of a magnetic boundary, or domain wall, between opposing magnetic domains in the magnetization reversal process. Domain-wall propagation in confined structures is of basic interest and critical to the performance of a recently demonstrated magnetic logic scheme for spintronics.
View Article and Find Full Text PDF