Recurrent changes recorded in LULC in Guna Tana watershed are a long-standing problem due to the increase in urbanization and agricultural lands. This research aims at identifying and predicting frequent changes observed using support vector machines (SVM) for supervised classification and cellular automata-based artificial neural network (CA-ANN) models for prediction in the quantum geographic information systems (QGIS) plugin MOLUSCE. Multi-temporal spatial Landsat 5 Thematic Mapper (TM) imageries, Enhanced Thematic Mapper plus 7 (ETM+), and Landsat 8 Operational Land Imager (OLI) images were used to find the acute problem the watershed is facing.
View Article and Find Full Text PDF