ACS Appl Mater Interfaces
January 2017
In previous work, it was demonstrated that using LiCO-coated Ni particles in the manufacturing of multilayer ceramic capacitor (MLCC) devices could improve both the permittivity and dissipation factors. However, adding Li ions to the system gave rise to the concern that ions could migrate under sustained electrical fields and thereby increase the degradation rates of the insulation resistance in MLCCs. In this paper, thermally stimulated depolarization current and highly accelerated lifetime testing were both utilized to evaluate the oxygen vacancy space-charge regions and migration in MLCCs.
View Article and Find Full Text PDFACS Appl Mater Interfaces
November 2016
Both LiCO-coated nickel particles and fast firing technique were utilized in the manufacturing of MLCCs. They preserved the conductivity of Ni electrodes and provided the possibility of sintering the devices in oxidizing atmospheres. By using our method, the partial pressure of oxygen increased from 10 atm in conventional methods to 10 atm.
View Article and Find Full Text PDFAlthough many techniques have been applied to protect nickel (Ni) alloys from oxidation at intermediate and high temperatures, the potential of atomic layer deposition (ALD) coatings has not been fully explored. In this paper, the application of ALD coatings (HfO2, Al2O3, SnO2, and ZnO) on Ni foils has been evaluated by electrical characterization and transmission electron microscopy analyses in order to assess their merit to increase Ni oxidation resistance; particular consideration was given to preserving Ni electrical conductivity at high temperatures. The results suggested that as long as the temperature was below 850 °C, the ALD coatings provided a physical barrier between outside oxygen and Ni metal and hindered the oxygen diffusion.
View Article and Find Full Text PDF