Front Aging Neurosci
May 2023
Specific and effective treatments for autism spectrum disorder (ASD) are lacking due to a poor understanding of disease mechanisms. Here we test the idea that similarities between diverse ASD mouse models are caused by deficits in common molecular pathways at neuronal synapses. To do this, we leverage the availability of multiple genetic models of ASD that exhibit shared synaptic and behavioral deficits and use quantitative mass spectrometry with isobaric tandem mass tagging (TMT) to compare their hippocampal synaptic proteomes.
View Article and Find Full Text PDFHow changes in brain scaling relate to altered behavior is an important question in neurodevelopmental disorder research. Mice with germline haploinsufficiency ( ) closely mirror the abnormal brain scaling and behavioral deficits seen in humans with macrocephaly/autism syndrome, which is caused by mutations. We explored whether deviation from normal patterns of growth can predict behavioral abnormalities.
View Article and Find Full Text PDFgermline haploinsufficient () mice, which model macrocephaly/autism syndrome, show social and repetitive behavior deficits, early brain overgrowth, and cortical-subcortical hyperconnectivity. Previous work indicated that altered neuronal connectivity may be a substrate for behavioral deficits. We hypothesized that exposing mice to environmental enrichment after brain overgrowth has occurred may facilitate adaptation to abnormal "hard-wired" connectivity through enhancing synaptic plasticity.
View Article and Find Full Text PDFBackground: Mutations in DYRK1A are a cause of microcephaly, autism spectrum disorder, and intellectual disability; however, the underlying cellular and molecular mechanisms are not well understood.
Methods: We generated a conditional mouse model using Emx1-cre, including conditional heterozygous and homozygous knockouts, to investigate the necessity of Dyrk1a in the cortex during development. We used unbiased, high-throughput phosphoproteomics to identify dysregulated signaling mechanisms in the developing Dyrk1a mutant cortex as well as classic genetic modifier approaches and pharmacological therapeutic intervention to rescue microcephaly and neuronal undergrowth caused by Dyrk1a mutations.
The prefrontal cortex and amygdala are anatomical substrates linked to both social information and emotional valence processing, but it is not known whether sub-circuits in the medial prefrontal cortex (mPFC) that project to the basolateral amygdala (BLA) are recruited and functionally contribute to social approach-avoidance behavior. Using retrograde labeling of mPFC projections to the BLA, we find that BLA-projecting neurons in the infralimbic cortex (IL) are preferentially activated in response to a social cue as compared with BLA-projecting neurons in the prelimbic cortex (PL). Chemogenetic interrogation of these sub-circuits shows that activation of PL-BLA or inhibition of IL-BLA circuits impairs social behavior.
View Article and Find Full Text PDFMutations that inactivate negative translation regulators cause autism spectrum disorders (ASD), which predominantly affect males and exhibit social interaction and communication deficits and repetitive behaviors. However, the cells that cause ASD through elevated protein synthesis resulting from these mutations remain unknown. Here we employ conditional overexpression of translation initiation factor eIF4E to increase protein synthesis in specific brain cells.
View Article and Find Full Text PDFCold Spring Harb Perspect Med
September 2020
A subset of individuals with autism spectrum disorder (ASD) and macrocephaly carry mutations in the gene Animal models, particularly mice, have been helpful in establishing a causal role for mutations in autism-relevant behavioral deficits. These models are a useful tool for investigating neurobiological mechanisms of these behavioral phenotypes and developing potential therapeutic interventions. Here we provide an overview of various genetic mouse models that have been used to characterize behavioral phenotypes caused by perturbation of We discuss convergent and divergent phenotypes across models with the aim of highlighting a set of behavioral domains that are sensitive to the effects of mutation and that may provide useful readouts for translational and basic neuroscience research.
View Article and Find Full Text PDFHaploinsufficiency for PTEN is a cause of autism spectrum disorder and brain overgrowth; however, it is not known if PTEN mutations disrupt scaling across brain areas during development. To address this question, we used magnetic resonance imaging to analyze brains of male Pten haploinsufficient (Pten) mice and wild-type littermates during early postnatal development and adulthood. Adult Pten mice display a consistent pattern of abnormal scaling across brain areas, with white matter (WM) areas being particularly affected.
View Article and Find Full Text PDFHeterozygous mutations in PTEN, which encodes a negative regulator of the mTOR and β-catenin signaling pathways, cause macrocephaly/autism syndrome. However, the neurobiological substrates of the core symptoms of this syndrome are poorly understood. Here, we investigate the relationship between cerebral cortical overgrowth and social behavior deficits in conditional Pten heterozygous female mice (Pten cHet) using Emx1-Cre, which is expressed in cortical pyramidal neurons and a subset of glia.
View Article and Find Full Text PDFThere is a pressing need to improve approaches for drug discovery related to neuropsychiatric disorders (NSDs). Therapeutic discovery in neuropsychiatric disorders would benefit from screening assays that can measure changes in complex phenotypes linked to disease mechanisms. However, traditional assays that track complex neuronal phenotypes, such as neuronal connectivity, exhibit poor scalability and are not compatible with high-throughput screening (HTS) procedures.
View Article and Find Full Text PDFThe precise molecular and cellular events responsible for age-dependent cognitive dysfunctions remain unclear. We report that Rheb (ras homolog enriched in brain) GTPase, an activator of mammalian target of rapamycin (mTOR), regulates memory functions in mice. Conditional depletion of Rheb selectively in the forebrain of mice obtained from crossing Rheb and CamKII results in spontaneous signs of age-related memory loss, that is, spatial memory deficits (T-maze, Morris water maze) without affecting locomotor (open-field test), anxiety-like (elevated plus maze), or contextual fear conditioning functions.
View Article and Find Full Text PDFMultiple autism risk genes converge on the regulation of mTOR signalling, which is a key effector of neuronal growth and connectivity. We show that mTOR signalling is dysregulated during early postnatal development in the cerebral cortex of germ-line heterozygous Pten mutant mice (Pten), which model macrocephaly/autism syndrome. The basolateral amygdala (BLA) receives input from subcortical-projecting neurons in the medial prefrontal cortex (mPFC).
View Article and Find Full Text PDFZika virus (ZIKV) infection in pregnant women has been established as a cause of microcephaly in newborns. Here we test the hypothesis that neurodevelopmental stages when the brain is undergoing rapid growth are particularly vulnerable to the effects of ZIKV infection. We injected ZIKV intracranially into wild type C57BL/6 mice at two different time points: early postnatal development, when the brain is growing at its maximal rate, and at weaning, when the brain has largely reached adult size.
View Article and Find Full Text PDFGermline heterozygous mutations in Pten (phosphatase and tensin homolog) are associated with macrocephaly and autism spectrum disorders (ASD). Pten germline heterozygous (Pten ) mice approximate these mutations, and both sexes show widespread brain overgrowth and impaired social behavior. Strikingly similar behavior phenotypes have been reported in oxytocin (Oxt) and/or oxytocin receptor (OxtR) knockout mice.
View Article and Find Full Text PDFUnlabelled: Abnormal patterns of head and brain growth are a replicated finding in a subset of individuals with autism spectrum disorder (ASD). It is not known whether risk factors associated with ASD and abnormal brain growth (both overgrowth and undergrowth) converge on common biological pathways and cellular mechanisms in the developing brain. Heterozygous mutations in PTEN (PTEN(+/-)), which encodes a negative regulator of the PI3K-Akt-mTOR pathway, are a risk factor for ASD and macrocephaly.
View Article and Find Full Text PDFHuntington's disease (HD) is caused by an expansion of glutamine repeats in the huntingtin protein (mHtt) that invokes early and prominent damage of the striatum, a region that controls motor behaviors. Despite its ubiquitous expression, why certain brain regions, such as the cerebellum, are relatively spared from neuronal loss by mHtt remains unclear. Previously, we implicated the striatal-enriched GTPase, Rhes (Ras homolog enriched in the striatum), which binds and SUMOylates mHtt and increases its solubility and cellular cytotoxicity, as the cause for striatal toxicity in HD.
View Article and Find Full Text PDFBackground: Genetic haploinsufficiency of SYNGAP1/Syngap1 commonly occurs in developmental brain disorders, such as intellectual disability, epilepsy, schizophrenia, and autism spectrum disorder. Thus, studying mouse models of Syngap1 haploinsufficiency may uncover pathologic developmental processes common among distinct brain disorders.
Methods: A Syngap1 haploinsufficiency model was used to explore the relationship between critical period dendritic spine abnormalities, cortical circuit assembly, and the window for genetic rescue to understand how damaging mutations disrupt key substrates of mouse brain development.
In patients with Huntington's disease (HD), the protein huntingtin (Htt) has an expanded polyglutamine (poly-Q) tract. HD results in early loss of medium spiny neurons in the striatum, which impairs motor and cognitive functions. Identifying the physiological role and molecular functions of Htt may yield insight into HD pathogenesis.
View Article and Find Full Text PDFAccelerated head and brain growth (macrocephaly) during development is a replicated biological finding in a subset of individuals with autism spectrum disorder (ASD). However, the relationship between brain overgrowth and the behavioral and cognitive symptoms of ASD is poorly understood. The PI3K-Akt-mTOR pathway regulates cellular growth; several genes encoding negative regulators of this pathway are ASD risk factors, including PTEN.
View Article and Find Full Text PDFAlthough there have been major advances in elucidating the functional biology of the human brain, relatively little is known of its cellular and molecular organization. Here we report a large-scale characterization of the expression of ∼1,000 genes important for neural functions by in situ hybridization at a cellular resolution in visual and temporal cortices of adult human brains. These data reveal diverse gene expression patterns and remarkable conservation of each individual gene's expression among individuals (95%), cortical areas (84%), and between human and mouse (79%).
View Article and Find Full Text PDFA major problem in understanding mechanisms of pathogenesis in autism spectrum disorder (ASD) is deciphering how risk factors act via the brain to influence the behavioral symptoms of this disorder. We may start to bridge this gap in our understanding by systematically examining the structure and function of cell types that make up circuits underlying behavioral endophenotypes in animal models for ASD. A confluence of advances in basic behavioral neurobiology, in ASD mechanisms and animal models, and in genetic tools for imaging and manipulating brain circuits will make this possible.
View Article and Find Full Text PDFUnlabelled: The inhibitory GABAergic system has been implicated in multiple neuropsychiatric diseases such as schizophrenia and autism. The Dlx homeobox transcription factor family is essential for development and function of GABAergic interneurons. Mice lacking the Dlx1 gene have postnatal subtype-specific loss of interneurons and reduced IPSCs in their cortex and hippocampus.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
February 2009
Autism spectrum disorder (ASD) is a heterogeneous group of neurodevelopmental disorders that share deficits in sociability, communication, and restrictive and repetitive interests. ASD is likely polygenic in origin in most cases, but we presently lack an understanding of the relationships between ASD susceptibility genes and the neurobiological and behavioral phenotypes of ASD. Two genes that have been implicated as conferring susceptibility to ASD are PTEN and Serotonin transporter (SLC6A4).
View Article and Find Full Text PDFAltered sociability is a core feature of a variety of human neurological disorders, including autism. Social behaviors may be tested in animal models, such as mice, to study the biological basis of sociability and how this is altered in neurodevelopmental disorders. A quantifiable social behavior frequently used to assess sociability in the mouse is the tendency to approach and interact with an unfamiliar mouse.
View Article and Find Full Text PDF