Publications by authors named "Damon R Carl"

The sequential bond dissociation energies (BDEs) of Ba(2+)(H2O)x complexes, where x = 1-8, are determined using threshold collision-induced dissociation (TCID) in a guided ion beam tandem mass spectrometer. The electrospray ionization source generates complexes ranging in size from x = 6 to x = 8 with smaller complexes, x = 1-5, formed by an in-source fragmentation technique. The only products observed result from sequential loss of water ligands.

View Article and Find Full Text PDF

The sequential bond energies of Mg(2+)(H2O)x complexes, in which x=2-10, are measured by threshold collision-induced dissociation in a guided ion beam tandem mass spectrometer. From an electrospray ionization source that produces an initial distribution of Mg(2+)(H2O)x complexes in which x=7-10, complexes down to x=3 are formed by using an in-source fragmentation technique. Complexes smaller than Mg(2+)(H2O)3 cannot be formed in this source because charge separation into MgOH(+)(H2O) and H3O(+) is a lower-energy pathway than simple water loss from Mg(2+)(H2O)3.

View Article and Find Full Text PDF

The sequential bond energies of Ca(2+)(H(2)O)(x) complexes, where x = 1-8, are measured by threshold collision-induced dissociation (TCID) in a guided ion beam tandem mass spectrometer. From an electrospray ionization source that produces an initial distribution of Ca(2+)(H(2)O)(x) complexes where x = 6-8, complexes down to x = 2 are formed using an in-source fragmentation technique. Ca(2+)(H(2)O) cannot be formed in this source because charge separation into CaOH(+) and H(3)O(+) is a lower energy pathway than simple water loss from Ca(2+)(H(2)O)(2).

View Article and Find Full Text PDF

The gas-phase structures of transition-metal dication (Zn(2+) and Cd(2+)) complexes with varying sized crown ethers, 12-crown-4 (12c4), 15-crown-5 (15c5), and 18-crown-6 (18c6), are investigated using infrared multiple photon dissociation (IRMPD) spectroscopy and quantum mechanical calculations. The measured spectra span the 750-1600 cm(-1) infrared range, utilizing light generated by a free electron laser, and are compared to predicted spectra calculated at the B3LYP/6-311+G(d,p) or B3LYP/Def2TZVP levels of theory. Spectra with the largest and most flexible crown ether, 18c6, indicate that the crown is highly distorted, wrapping in a tight cage-like structure around both dications studied.

View Article and Find Full Text PDF

The gas-phase structures of alkali-metal cation complexes of the amino acid methionine (Met) as well as protonated methionine are investigated using infrared multiple photon dissociation (IRMPD) spectroscopy utilizing light generated by a free electron laser. Spectra of Li(+)(Met) and Na(+)(Met) are similar and relatively simple, whereas the spectra of K(+)(Met), Rb(+)(Met), and Cs(+)(Met) include distinctive new bands. Measured IRMPD spectra are compared to spectra calculated at the B3LYP/6-311+G(d,p) level of theory to identify the conformations present in the experimental studies.

View Article and Find Full Text PDF

The interactions of alkali metal cations (M(+) = Li(+), Na(+), K(+), Rb(+)) with the amino acid cysteine (Cys) are examined in detail. Experimentally, bond energies are determined using threshold collision-induced dissociation of the M(+)(Cys) complexes with xenon in a guided ion beam mass spectrometer. Analyses of the energy dependent cross sections provide 0 K bond energies of 2.

View Article and Find Full Text PDF

Our electrospray ionization-ion funnel-rf hexapole (ESI-IF-6P) source is designed to produce ions for threshold collision-induced dissociation (TCID) studies in a guided ion beam mass spectrometer. This ion source forms an initial distribution of Ca2+(H2O)x ions where x is 6-9. A new in-source fragmentation technique within the hexapole ion guide of the source is described, which is easy to implement and of modest machining and electrical costs, and is able to generate smaller Ca2+(H2O)x complexes, where x = 2-5.

View Article and Find Full Text PDF

Threshold collision-induced dissociation of M (+)( nMA) x with Xe is studied using guided ion beam mass spectrometry, where nMA = N-methylaniline and N, N-dimethylaniline and x = 1 and 2. M (+) includes the following alkali metal cations: Li (+), Na (+), K (+), Rb (+), and Cs (+). In all cases, the primary dissociation pathway corresponds to the endothermic loss of an intact nMA ligand.

View Article and Find Full Text PDF