Resting-state functional connectivity is a widely used approach to study the functional brain network organization during early brain development. However, the estimation of functional connectivity networks in individual infants has been rather elusive due to the unique challenges involved with functional magnetic resonance imaging (fMRI) data from young populations. Here, we use fMRI data from the developing Human Connectome Project (dHCP) database to characterize individual variability in a large cohort of term-born infants (N = 289) using a novel data-driven Bayesian framework.
View Article and Find Full Text PDFFunctional MRI (fMRI) data may be contaminated by artifacts arising from a myriad of sources, including subject head motion, respiration, heartbeat, scanner drift, and thermal noise. These artifacts cause deviations from common distributional assumptions, introduce spatial and temporal outliers, and reduce the signal-to-noise ratio of the data-all of which can have negative consequences for the accuracy and power of downstream statistical analysis. Scrubbing is a technique for excluding fMRI volumes thought to be contaminated by artifacts and generally comes in two flavors.
View Article and Find Full Text PDFIntroduction: Analysis of task fMRI studies is typically based on using ordinary least squares within a voxel- or vertex-wise linear regression framework known as the general linear model. This use produces estimates and standard errors of the regression coefficients representing amplitudes of task-induced activations. To produce valid statistical inferences, several key statistical assumptions must be met, including that of independent residuals.
View Article and Find Full Text PDFThere is significant interest in adopting surface- and grayordinate-based analysis of MR data for a number of reasons, including improved whole-cortex visualization, the ability to perform surface smoothing to avoid issues associated with volumetric smoothing, improved inter-subject alignment, and reduced dimensionality. The CIFTI grayordinate file format introduced by the Human Connectome Project further advances grayordinate-based analysis by combining gray matter data from the left and right cortical hemispheres with gray matter data from the subcortex and cerebellum into a single file. Analyses performed in grayordinate space are well-suited to leverage information shared across the brain and across subjects through both traditional analysis techniques and more advanced statistical methods, including Bayesian methods.
View Article and Find Full Text PDF