Publications by authors named "Damon Barbacci"

Oncolytic virus immunotherapy is emerging as a novel therapeutic approach for cancer treatment. Immunotherapy clinical drug candidate V937 is currently in phase I/II clinical trials and consists of a proprietary formulation of Coxsackievirus A21 (CVA21), which specifically infects and lyses cells with overexpressed ICAM-1 receptors in a range of tumors. Mature Coxsackievirus virions, consisting of four structural virion proteins, (VPs) VP1, VP2, VP3, and VP4, and the RNA genome, are the only viral particles capable of being infectious.

View Article and Find Full Text PDF

The employment of ethylenediaminetetraacetic acid (EDTA) across several fields in chemistry and biology has required the creation of a high number of quantitative assays. Nonetheless, the determination of trace EDTA, especially in biologics and vaccines, remains challenging. Herein, we introduce an automated high-throughput approach based on EDTA esterification in 96-well plates using boron trifluoride-methanol combined with rapid analysis by ultra-high-performance liquid chromatography-triple quadrupole tandem mass spectrometry (UHPLC-QqQ-MS/MS).

View Article and Find Full Text PDF

The commercially available Polysorbate 80 (PS-80) is a highly heterogeneous product. It is a complex and structurally diverse mixture consisting of polymeric species containing polyoxyethylenes (POEs), fatty acid esters, with/or without a carbohydrate core. The core is primarily sorbitan, with some isosorbide and sorbitol.

View Article and Find Full Text PDF

In this paper, drug-drug chemical interactions between two different aromatic compounds were studied by mass spectrometry. Specifically, we examined non-covalent complexes (NCX) between paclitaxel, a chemotherapeutic compound, and medications widely used in palliative care for depression, psychosis, and anxiety. It is unknown whether psychotropic medications directly interact with paclitaxel.

View Article and Find Full Text PDF

Traumatic brain injury (TBI) is a serious public health problem and the leading cause of death in children and young adults. It also contributes to a substantial number of cases of permanent disability. As lipids make up over 50% of the brain mass and play a key role in both membrane structure and cell signaling, their profile is of particular interest.

View Article and Find Full Text PDF

Mass spectrometry imaging (MSI) of tissue implanted with silver nanoparticulate (AgNP) matrix generates reproducible imaging of lipids in rodent models of disease and injury. Gas-phase production and acceleration of size-selected 8 nm AgNP is followed by controlled ion beam rastering and soft landing implantation of 500 eV AgNP into tissue. Focused 337 nm laser desorption produces high quality images for most lipid classes in rat brain tissue (in positive mode: galactoceramides, diacylglycerols, ceramides, phosphatidylcholines, cholesteryl ester, and cholesterol, and in negative ion mode: phosphatidylethanolamides, sulfatides, phosphatidylinositol, and sphingomyelins).

View Article and Find Full Text PDF

Alcohol abuse is a chronic disease characterized by the consumption of alcohol at a level that interferes with physical and mental health and causes serious and persistent changes in the brain. Lipid metabolism is of particular interest due to its high concentration in the brain. Lipids are the main component of cell membranes, are involved in cell signaling, signal transduction, and energy storage.

View Article and Find Full Text PDF

Background: Mild traumatic brain injury (TBI) is a common public health issue that may contribute to chronic degenerative disorders. Membrane lipids play a key role in tissue responses to injury, both as cell signals and as components of membrane structure and cell signaling. This study demonstrates the ability of high resolution mass spectrometry imaging (MSI) to assess sequences of responses of lipid species in a rat controlled cortical impact model for concussion.

View Article and Find Full Text PDF

The well-characterized cellular and structural components of the kidney show distinct regional compositions and distribution of lipids. In order to more fully analyze the renal lipidome we developed a matrix-assisted laser desorption/ionization mass spectrometry approach for imaging that may be used to pinpoint sites of changes from normal in pathological conditions. This was accomplished by implanting sagittal cryostat rat kidney sections with a stable, quantifiable and reproducible uniform layer of silver using a magnetron sputtering source to form silver nanoparticles.

View Article and Find Full Text PDF

Profiling and imaging MALDI mass spectrometry (MS) allows detection and localization of biomolecules in tissue, of which lipids are a major component. However, due to the nature of this technique, complexity of tissue and need for a chemical matrix, the recorded signal is complex and can be difficult to assign. Ion mobility adds a dimension that provides coarse shape information, separating isobaric lipids, peptides, and oligonucleotides along distinct familial trend lines before mass analysis.

View Article and Find Full Text PDF

We previously demonstrated that ammonium- or guanidinium-phosphate interactions are key to forming noncovalent complexes (NCXs) through salt bridge formation with G-protein coupled receptors (GPCR), which are immersed in the cell membrane's lipids. The present work highlights MALDI ion mobility coupled to orthogonal time-of-flight mass spectrometry (MALDI IM oTOF MS) as a method to determine qualitative and relative quantitative affinity of drugs to form NCXs with targeted GPCRs' epitopes in a model system using, bis-quaternary amine based drugs, α- and β- subunit epitopes of the nicotinic acetylcholine receptor' (nAChR) and phospholipids. Bis-quaternary amines proved to have a strong affinity for all nAChR epitopes and negatively charged phospholipids, even in the presence of the physiological neurotransmitter acetylcholine.

View Article and Find Full Text PDF

Electron ionization (EI) mass spectrometry was used to differentiate four structurally closely related citrus limonoid aglycones, including limonin, nomilin, obacunone, and deacetylnomilin. The limonoids were isolated and purified from citrus seeds. Structures of major fragment ions were elucidated by high-resolution mass spectrometry (HRMS) and fragmentation pathways were proposed.

View Article and Find Full Text PDF

The product ion formation characteristics of four diastereomeric deoxyadenosine adducts formed by the reaction of the syn and anti diastereomers of trans-3,4-dihydroxy-5,5a-epoxy-3,4,5,5a-tetrahydrobenzo[ghi]fluoranthene are studied by matrix-assisted laser desorption ionization and postsource decay (PSD) to determine fragmentation pathways that may permit differentiation of their structures. The two adducts derived from each diol-epoxide with DNA differ in structure based on the cis/trans arrangement of the 3'-hydroxyl group on the benzo[ghi]fluoranthene (B[ghi]F) and the adenine base bound to the B[ghi]F 5a carbon. The two adduct diastereomers with the cis adenine-3'-hydroxyl configuration produce product ions at m/z 394 and m/z 510 formed by the loss of water that are not observed in the PSD spectra of the two trans isomers.

View Article and Find Full Text PDF

In this paper, we describe implementation and testing of an immunoaffinity (IA) column for rapid and selective extraction of 7-(benzo[a]pyren-6-yl)adenine (BP-6-N7Ade) and 7-(benzo[a]pyren-6-yl)guanine (BP-6-N7Gua) from urine, where BP is benzo[a]pyrene. The BP radical cation is a carcinogenic metabolite that reacts with double-stranded DNA, producing depurinated BP-adducted DNA bases excreted in urine. The expected modified nucleobases are BP-6-N7Gua, BP-6-N7Ade, and 8-(benzo[a]pyren-6-yl)guanine (BP-6-C8Gua), and they may serve as important biomarkers for DNA damage by PAHs.

View Article and Find Full Text PDF