Hemp fiber was used untreated and treated with sodium hydroxide or (3-aminopropyl)triethoxysilane (APTES) as an additive in polylactic acid (PLA) for fused filament fabrication (FFF) of tensile test specimens. Composites granules were produced by solvent processing with 10 wt. % of hemp fiber to use as feedstock for the extrusion of filaments compatible with commercial FFF printers.
View Article and Find Full Text PDFShrimp shell waste obtained from Louisiana Gulf shrimp (Litopenaeus setiferus) was heat-treated at varying temperatures and ground into a powder by ball-milling. The powder was used with and without surface treatment with maleic anhydride or stearic acid to form shrimp shell - polylactic acid (PLA) composite granules by solution processing and mechanical grinding. These granules were used as feedstock for the extrusion of composite filaments.
View Article and Find Full Text PDFDevelopment of new additive manufacturing materials often requires the production of several batches of relatively large volumes in order to print and test objects. This can be difficult for many materials that are expensive or difficult to produce in large volumes on the laboratory scale. Bioprinter systems are advantageous in this regard, however, commercial systems are expensive or do not have the ability to use photopolymers.
View Article and Find Full Text PDFThe mechanical strengths of individual germanium (Ge) nanowires with 111 growth direction and diameters ranging from 23 to 97 nm were measured by bending each with a robotic nanomanipulator in a scanning electron microscope (SEM). The nanowires tolerate diameter-dependent flexural strains of up to 17% prior to fracture, which is more than 2 orders of magnitude higher than bulk Ge. The corresponding bending strength of 18 GPa is in agreement with the ideal strength of 14-20 GPa for a perfect Ge crystal.
View Article and Find Full Text PDFMagneto-optical spectra (Faraday effect) for nanometer-scale particles and collections of particles are calculated using a modification of the discrete dipole approximation (DDA). The approximation is used as a finite-element method for non-spherical particles whose dimensions are on the order of or smaller than the incident light wavelength, lambda. Also, we use the approximation to calculate scattering from arrangements of spherical nanoparticles with diameters << lambda.
View Article and Find Full Text PDF