Publications by authors named "Damodaran V"

Article Synopsis
  • Tissue phantoms are essential for validating biomedical imaging techniques, especially in optical imaging like optical coherence tomography.
  • The study focused on developing eye-mimicking phantoms using various materials and incorporating microfluidic channels to simulate blood vessels.
  • A 3D model was created to represent the anatomy of the eye, particularly the retina and contact lens, which could lead to advancements in combined imaging technologies.
View Article and Find Full Text PDF

Anisotropic materials formed by living organisms possess remarkable mechanical properties due to their intricate microstructure and directional freedom. In contrast, human-made materials face challenges in achieving similar levels of directionality due to material and manufacturability constraints. To overcome these limitations, an approach using 3D printing of self-assembling thermotropic liquid crystal polymers (LCPs) is presented.

View Article and Find Full Text PDF

Background: Ureteral stents play a major role in maintaining ureteral patency. Various innovations are advocated in the design and subsequent removal of traditional double-J ureteral stents, such as the magnetic-end double-J ureteral stent (MEDJUS). This stent facilitates outpatient removal using a magnetic stent removal device.

View Article and Find Full Text PDF

Macro-scale, hemispherical-shaped resonating gyroscopes are used in high-precision motion and navigation applications. In these gyroscopes, a 3D wine-glass, hemispherical-shaped resonating structure is used as the main sensing element. Motivated by the success of macroscale hemispherical shape gyroscopes, many microscale hemispherical-shaped resonators have been produced due to the rapid advancement in semiconductor-based microfabrication technologies.

View Article and Find Full Text PDF

Protracted droughts lasting years to decades constitute severe threats to human welfare across the Indian subcontinent. Such events are, however, rare during the instrumental period (. since 1871 CE).

View Article and Find Full Text PDF

This paper addresses the energy minimised operation of seawater reverse osmosis (SWRO) desalination process by simultaneous manipulation of feed pressure and reject valve opening. The specific energy consumption (SEC) analysis of SWRO desalination process for maintaining constant permeate flow during feed salinity variation is performed. The analysis is carried out to identify the suitable manipulating variables that can reduce the energy requirement for regulating permeate flow during feed salinity variation.

View Article and Find Full Text PDF

This article investigates the impact of incorporating silica nanoparticles of varying diameters in label free impedance immunosensor. It has been observed that even if the surface area improvement has been adjusted to be similar for all the diameters, the sensitivity is enhanced by five times at a particular diameter of 100 nm due to the optimum combination of intersection with electric field lines and surface convexity. This study has enabled the detection of 0.

View Article and Find Full Text PDF

Background: Health-related quality of life (HRQOL) is emerging as an important outcome among patients with documented coronary artery disease (CAD). The primary objective of this study was to report the HRQOL of CAD patients under secondary prevention-related treatment and follow-up using the 36-Item Short Form (SF-36) tool.

Methods: This was an analytical cross-sectional survey done in a hospital/clinic setting.

View Article and Find Full Text PDF

A high-speed 840 nm based polarization-sensitive time domain optical coherence tomography (PSOCT) technique is proposed and demonstrated based on the quadratic electro-optic property of potassium tantalate niobate (KTN) crystals. A longitudinal (axial) scanning depth of ≈10  μm is obtained for an applied AC voltage of 600 V, at 1000 Hz and temperature maintained around 40°C. The OCT system with the KTN-based electro-optic delay line combined with a linear actuation is extended to image an early dental demineralization.

View Article and Find Full Text PDF

Objective: Despite the feasibility of short-term neural recordings using implantable microelectrodes, attaining reliable, chronic recordings remains a challenge. Most neural recording devices suffer from a long-term tissue response, including gliosis, at the device-tissue interface. It was hypothesized that smaller, more flexible intracortical probes would limit gliosis by providing a better mechanical match with surrounding tissue.

View Article and Find Full Text PDF

Right from the beginning, genetics has been an international venture, with international networks involving the collaboration of scientists across continents. Janaki Ammal's career illustrates this. This paper traces her scientific path by situating it in the context of her relationships with J.

View Article and Find Full Text PDF

The effects of ethylene oxide (EO), vaporized hydrogen peroxide (VHP), gamma (γ) radiation, and electron-beam (E-beam) on the physiochemical and morphological properties of medical device polymers are investigated. Polymers with ether, carbonate, carboxylic acid, amide and ester functionalities are selected from a family of poly(ethylene glycol) (PEG) containing tyrosine-derived polycarbonates (TyrPCs) to include slow, medium, fast, and ultrafast degrading polymers. Poly(lactic acid) (PLA) is used for comparison.

View Article and Find Full Text PDF

Contamination of biomedical devices in a biological medium, biofouling, is a major cause of infection and is entirely avoidable. This mini-review will coherently present the broad range of antifouling strategies, germicidal, preventive and cleaning using one or more of biological, chemical and physical techniques. These techniques will be discussed from the point of view of their ability to inhibit protein adsorption, usually the first step that eventually leads to fouling.

View Article and Find Full Text PDF

Single-unit recording neural probes have significant advantages towards improving signal-to-noise ratio and specificity for signal acquisition in brain-to-computer interface devices. Long-term effectiveness is unfortunately limited by the chronic injury response, which has been linked to the mechanical mismatch between rigid probes and compliant brain tissue. Small, flexible microelectrodes may overcome this limitation, but insertion of these probes without buckling requires supporting elements such as a stiff coating with a biodegradable polymer.

View Article and Find Full Text PDF

Nitric oxide (NO) is a biologically-active free radical involved in numerous physiological processes such as regulation of vasodilation, promotion of cell proliferation and angiogenesis, and modulation of the inflammatory and immune responses. Furthermore, NO has demonstrated the ability to mitigate the foreign body response that often results in the failure of implanted biomedical devices. Although NO has promising therapeutic value, the short physiological half-life of exogenous NO complicates its effective delivery.

View Article and Find Full Text PDF

The pathogenicity of Candida viswanathii, PCI 501/1 (CBS 4024), originally isolated from CSF of a fatal case of meningitis in India, is reported. Also, included is a global overview of the occurrence of C. viswanathii in clinical and environmental sources.

View Article and Find Full Text PDF

We report a fabrication process for coating neural probes with an ultrafast degrading polymer to create consistent and reproducible devices for neural tissue insertion. The rigid polymer coating acts as a probe insertion aid, but resorbs within hours post-implantation. Despite the feasibility for short term neural recordings from currently available neural prosthetic devices, most of these devices suffer from long term gliosis, which isolates the probes from adjacent neurons, increasing the recording impedance and stimulation threshold.

View Article and Find Full Text PDF

A conventional optical coherence tomography (OCT) system was set up in-house to image early dental caries, identify gap formation in the bonding interface for restoration and secondary caries. Two-dimensional images of tooth samples was obtained and dental defect were identified. A novel electro-optic tuning system is proposed in order to improve scanning speed and to perform noiseless imaging.

View Article and Find Full Text PDF

Controlling platelet activation and clotting initiated by cardiovascular interventions remains a major challenge in clinical practice. In this work, the anti-thrombotic properties of a polysaccharide-based nitric oxide (NO)-releasing dextran derivative are presented. Total platelet adhesion, platelet morphology and whole blood clotting kinetics were used as indicators to evaluate the anti-clotting properties of this material.

View Article and Find Full Text PDF

Bioassay and NMR approaches have been used to guide the isolation of one known and two new cyclic 3-alkyl pyridinium alkaloid (3-APA) monomers from the New Zealand marine sponge Haliclona sp. The new compounds, dehydrohaliclocyclins C (3) and F (4), are the first reported examples of cyclic 3-APA monomers with unsaturation in the alkyl chain. The known compound haliclocyclin C (2) was also isolated from a mixture with 4.

View Article and Find Full Text PDF

Tumor resistance to cytotoxic therapeutics coupled with dose-limiting toxicity is a serious hurdle in the field of medical oncology. In the face of this obstacle, nitric oxide has emerged as a powerful adjuvant for the hypersensitization of tumors to more traditional chemo- and radio-therapeutics. Furthermore, emerging evidence indicates that nitric oxide donors have the potential to function independently in the clinical management of cancer.

View Article and Find Full Text PDF

Asceptic loosening remains the primary cause for failure of joint implant. The active role of fibroblasts in mediating asceptic loosening is however not well documented. In this study the initial interactions of fibroblasts with metal particles was studied by evaluating changes in the cytoskeletal structure and cytokine level.

View Article and Find Full Text PDF

Many common wound healing aids are created from biodegradable polymeric materials. Often, these materials are unable to induce complete healing in wounds because of their failure to prevent infection and promote cell growth. This study reports the development of therapeutic materials aimed at overcoming these limitations through the release of a naturally occurring antimicrobial agent from a porous, polymeric fiber scaffold.

View Article and Find Full Text PDF

Amine functionalized poly(ethylene glycols) (PEGs) with molecular weights 2000 and 4000 Da were covalently grafted onto carboxy modified hydrophilic Sephadex derivatives and hydrophobic polystyrene derivatives using anhydrous amine conjugation methods. Varying PEG surface concentration and layer thickness were achieved by controlling the reaction parameters and were analyzed by X-ray photoelectron spectroscopy (XPS). C-O intensities obtained from high resolution C 1s scans were correlated using the standard overlay model to study the grafting kinetics as well as conformational properties of grafted polymer chains.

View Article and Find Full Text PDF

Intraductal papillary neoplasms (IPNs) of breast form a wide spectrum of pathological changes with benign intraductal papilloma occupying one end of the spectrum and papillary carcinoma at the other end. Intraductal papillomas are known to occur anywhere within the ductal system and are broadly classified into central and peripheral types. Intraductal papillary carcinoma is an uncommon ductal malignancy forming papillary structures, and these lesions characteristically lack the myoepithelial layer present in benign papillary neoplasms.

View Article and Find Full Text PDF