We investigate the effect of low concentrations of iron on the physical properties of SnS van der Waals crystals grown from the melt. By means of scanning tunneling microscopy (STM) and photoemission spectroscopy we study Fe-induced defects and observe an electron doping effect in the band structure of the native p-type SnS semiconductor. Atomically resolved and bias dependent STM data of characteristic defects are compared to density functional theory simulations of vacancy (V and V), Fe substitutional (Fe), and Fe interstitial (Fe) defects.
View Article and Find Full Text PDFWith regard to the development of single atom catalysts (SACs), non-noble metal-organic layers combine a large functional variability with cost efficiency. Here, we characterize reacted layers of melamine and melem molecules on a Cu(111) surface by noncontact atomic force microscopy (nc-AFM), X-ray photoelectron spectroscopy (XPS) and ab initio simulations. Upon deposition on the substrate and subsequent heat treatments in ultrahigh vacuum (UHV), these precursors undergo a stepwise dehydrogenation.
View Article and Find Full Text PDFControlling the identity of the tip-terminating atom or molecule in low-temperature atomic force microscopy has led to ground breaking progress in surface chemistry and nanotechnology. Lacking a comparative tip-performance assessment, a profound standardization in such experiments is highly desirable. Here we directly compare the imaging and force-spectroscopy capabilities of four atomically defined tips, namely Cu-, Xe-, CO-, and O-terminated Cu-tips (CuOx-tips).
View Article and Find Full Text PDFProviding fundamental insights in atomic interactions, dedicated methods in atomic force microscopy allow measuring the threshold forces needed to move single adsorbed atoms or molecules. However, the chemical and structural properties of the probe-tip can drastically influence the results. Establishing atomically defined contacts in such experiments, the tips in the present study are functionalized with various chemically and structurally different terminations.
View Article and Find Full Text PDFFunctionalizing atomic force microscopy (AFM) tips by picking up single inert probe particles like CO or Xe from the surface drastically increase the resolution. In particular, this approach allows imaging organic molecules with submolecular resolution revealing their internal bonding structure. However, due to the weak coupling of these probe particles to both, the surface they are picked up from and the tip apex, these experiments require liquid helium temperatures (i.
View Article and Find Full Text PDF