Omega-3 (ω-3) fatty acids are one of the two main families of long chain polyunsaturated fatty acids (PUFA). The main omega-3 fatty acids in the mammalian body are α-linolenic acid (ALA), docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA). Central nervous tissues of vertebrates are characterized by a high concentration of omega-3 fatty acids.
View Article and Find Full Text PDFDietary intake of zinc and omega-3 fatty acids (DHA) have health benefits for a number of human diseases. However, the molecular basis of these health benefits remains unclear. Recently, we reported that zinc and DHA affect expression levels of histones H3 and H4 in human neuronal M17 cells.
View Article and Find Full Text PDFDocosahexaenoic acid (DHA) is the major polyunsaturated fatty acid in neuronal cell membranes. We hypothesize that DHA induces a decrease in neuronal cell death through reduced ZnT3 expression and zinc uptake. Exposure of M17 cells to DHA-deficient medium increased the levels of active caspase-3, relative to levels in DHA-replete cells, confirming the adverse effects of DHA deficiency in promoting neuronal cell death.
View Article and Find Full Text PDFZn and DHA have putative neuroprotective effects and these two essential nutrients are known to interact biochemically. We aimed to identify novel protein candidates that are differentially expressed in human neuronal cell line M17 in response to Zn and DHA that would explain the molecular basis of this interaction. Two-dimensional gel electrophoresis and MS were applied to identify major protein expression changes in the protein lysates of human Ml7 neuronal cells that had been grown in the presence and absence of Zn and DHA.
View Article and Find Full Text PDF