In this research, toxicological safety of two newly developed methods for the treatment of landfill leachate from the Piškornica (Croatia) sanitary landfill was investigated. Chemical treatment procedure combined chemical precipitation with CaO followed by coagulation with ferric chloride and final adsorption by clinoptilolite. Electrochemical treatment approach included pretreatment with ozone followed by electrooxidation/electrocoagulation and final polishing by microwave irradiation.
View Article and Find Full Text PDFJ Environ Sci Health A Tox Hazard Subst Environ Eng
October 2012
The aim of this research was development of appropriate procedure for the treatment of landfill leachate taken from the Visevac, Mraclinska Dubrava and Piskornica sanitary landfills. Due to the complex nature of the effluents a combined treatment approach was applied. The pretreatment step included simultaneous treatment with calcium oxide and electrocoagulation/electrooxidation by stainless steel electrode set.
View Article and Find Full Text PDFJ Environ Sci Health A Tox Hazard Subst Environ Eng
May 2012
A combined treatment approach using advanced oxidation, electrochemical methods and microwaves was developed and applied for the treatment of landfill leachate taken from Piskornica (Koprivnica, Croatia) sanitary landfill. Due to the complex nature of the effluent and extremely low bio-degradability (BOD(5)/COD ratio = 0.01) the purification of the leachate started with pre-treatment with ozone followed by simultaneous ozonation and electrocoagulation/electrooxidation using the set of iron and aluminum electrodes, and finally, the degradation of organic residue and ammonia with microwaves.
View Article and Find Full Text PDFJ Environ Sci Health A Tox Hazard Subst Environ Eng
June 2011
The aim of this research was development of appropriate procedure for treatment of landfill leachate taken from old sanitary landfill Piskornica (Koprivnica, Croatia). Due to complex nature of the effluent a combined treatment approach was applied. Samples were treated with calcium oxide followed by ferric chloride and finally with clinoptilolite.
View Article and Find Full Text PDFJ Environ Sci Health A Tox Hazard Subst Environ Eng
February 2009
In vitro genotoxic effects of leachates of electric arc furnace dust (EAFD) on human peripheral lymphocytes, assessed prior and following the treatment with a strong alkaline solution were investigated using the alkaline comet assay. Prior and following the treatment, lymphocytes were incubated with leachate of EAFD for 6 and 24 hours at 37 degrees C. Negative controls were also included.
View Article and Find Full Text PDFJ Environ Sci Health A Tox Hazard Subst Environ Eng
October 2008
The purpose of this work was development of an appropriate procedure for the neutralization/purification of electroplating wastewater (EWW) with alkaline solid residue (ASR) by-product of the alkaline extraction of zinc and lead from electric arc furnace dust (EAFD). Removal efficiency of ASR at optimum purification conditions (pH 8 and mixing time; 20 minutes) for the elements Pb, Cr (VI), Cr (III), Fe, Ni, Cu and Zn were 94.92%, 97.
View Article and Find Full Text PDF