Objective: ApoM enriches S1P (sphingosine-1-phosphate) within HDL (high-density lipoproteins) and facilitates the activation of the S1P1 (S1P receptor type 1) by S1P, thereby preserving endothelial barrier function. Many protective functions exerted by HDL in extravascular tissues raise the question of how S1P regulates transendothelial HDL transport. Approach and Results: HDL were isolated from plasma of wild-type mice, Apom knockout mice, human apoM transgenic mice or humans and radioiodinated to trace its binding, association, and transport by bovine or human aortic endothelial cells.
View Article and Find Full Text PDFBackground: The inverse care law states that disadvantaged populations need more health care than advantaged populations but receive less. Gaps in COVID-19-related health care and infection control are not well understood. We aimed to examine inequalities in health in the care cascade from testing for SARS-CoV-2 to COVID-19-related hospitalisation, intensive care unit (ICU) admission, and death in Switzerland, a wealthy country strongly affected by the pandemic.
View Article and Find Full Text PDFIntroductionIn contrast to countries where carbapenemase-producing Enterobacterales (CPE) are endemic, only sporadic cases were reported in Switzerland until 2013. An aggravation of the epidemiological situation in neighbouring European countries indicated the need for a surveillance study in Switzerland.AimWe aimed to describe CPE distributions in Switzerland and identify epidemiological factors associated with changes in incidence.
View Article and Find Full Text PDFThe European monitoring of excess mortality for public health action (EuroMOMO) network monitors weekly excess all-cause mortality in 27 European countries or subnational areas. During the first wave of the coronavirus disease (COVID-19) pandemic in Europe in spring 2020, several countries experienced extraordinarily high levels of excess mortality. Europe is currently seeing another upsurge in COVID-19 cases, and EuroMOMO is again witnessing a substantial excess all-cause mortality attributable to COVID-19.
View Article and Find Full Text PDFObjective: Low- and high-density lipoproteins (LDL and HDL) must pass the endothelial layer to exert pro- and antiatherogenic activities, respectively, within the vascular wall. However, the rate-limiting factors that mediate transendothelial transport of lipoproteins are yet little known. Therefore, we performed a high-throughput screen with kinase drug inhibitors to identify modulators of transendothelial LDL and HDL transport.
View Article and Find Full Text PDFHigh density lipoprotein (HDL) and its main protein component apolipoprotein A-I (ApoA-I) have multiple anti-atherogenic functions. Some of them are exerted within the vessel wall, so that HDL needs to pass the endothelial barrier. To elucidate their itinerary through endothelial cells (ECs), we labelled ApoA-I and HDL either fluorescently or with 1.
View Article and Find Full Text PDFObjective: In the reverse cholesterol transport pathway, high-density lipoprotein (HDL) passes the endothelial cell barrier by mechanisms involving the scavenger receptor class B type I and the ATP-binding cassette G1. However, little is known on how inflammation influences this transendothelial transport.
Approach And Results: On stimulation with interleukin-6, cultivated primary endothelial cells showed increased binding and transport of (125)I-HDL without changing the expression of scavenger receptor class B type I and ATP-binding cassette G1.
Endothelial injury and dysfunction (ED) represent a link between cardiovascular risk factors promoting hypertension and atherosclerosis, the leading cause of death in Western populations. High-density lipoprotein (HDL) is considered antiatherogenic and known to prevent ED. Using HDL from children and adults with chronic kidney dysfunction (HDL(CKD)), a population with high cardiovascular risk, we have demonstrated that HDL(CKD) in contrast to HDL(Healthy) promoted endothelial superoxide production, substantially reduced nitric oxide (NO) bioavailability, and subsequently increased arterial blood pressure (ABP).
View Article and Find Full Text PDFBackground: Endothelial dysfunction and injury are thought to play an important role in the progression of coronary artery disease (CAD). High-density lipoprotein from healthy subjects (HDL(Healthy)) has been proposed to exert endothelial antiapoptotic effects that may represent an important antiatherogenic property of the lipoprotein. The present study therefore aimed to compare effects of HDL(CAD) and HDL(Healthy) on the activation of endothelial anti- and proapoptotic pathways and to determine which changes of the lipoprotein are relevant for these processes.
View Article and Find Full Text PDFHigh density lipoproteins (HDL) and apolipoprotein A-I (apoA-I) must leave the circulation and pass the endothelium to exert their atheroprotective actions in the arterial wall. We previously demonstrated that the transendothelial transport of apoA-I involves ATP-binding cassette transporter (ABC) A1 and re-secretion of lipidated particles. Transendothelial transport of HDL is modulated by ABCG1 and the scavenger receptor BI (SR-BI).
View Article and Find Full Text PDFPathogenic mycobacteria survive within macrophages through the inhibition of phagosome-lysosome fusion. A crucial factor for avoiding lysosomal degradation is the mycobacterial serine/threonine protein kinase G (PknG). PknG is released into the macrophage cytosol upon mycobacterial infection, suggesting that PknG might exert its activity by interfering with host signaling cascades, but the mode of action of PknG remains unknown.
View Article and Find Full Text PDF