BACKGROUND Recent literature has revealed that LINC01207 plays a vital part in tumorigenesis and malignancy progression. However, the potential mechanisms of LINC01207 in malignant glioma are still unknown. MATERIAL AND METHODS Quantitative real-time polymerase chain reaction (qRT-PCR) was applied to analyze LINC01207 mRNA levels in malignant glioma cell lines and tissue samples.
View Article and Find Full Text PDFObjective: As a targeted therapeutic technique for glioma inhibition, photodynamic therapy (PDT) has gradually become a focus of basic research related to glioma treatment. The capacity of PDT to kill glioma cells involves varieties of pathways. In glioma cells, activated sodium-hydrogen exchanger isoform 1 (NHE1) can inhibit the cytotoxic effect of temozolomide (TMZ), promote cell migration and invasion, and inhibit cell apoptosis by changing the acid-base equilibrium.
View Article and Find Full Text PDFBACKGROUND The spalt-like transcription factor 1 (SALL1) gene is a member of the Krüppel-associated box-containing zinc finger proteins (KRAB-ZFPs) and has been shown to modulate the onset and progression of human tumors. This study aimed to investigate the regulatory effects and mechanisms of SALL1 gene expression in human glioblastoma and glioma cells and tissue samples from patients with cerebral glioma. MATERIAL AND METHODS The human glioblastoma cell lines, LN229, U87-MG, U-251, U343, and the Hs683 glioma cell line were studied.
View Article and Find Full Text PDFTemozolomide (TMZ) was used for clinical postoperative or non-surgical chemotherapy patients. However, its effect remains unsatisfactory and gradually discovered that the presence of chemoresistance. To explore more effective therapy using TMZ, we investigate the effects of combination of application of TMZ together with Sonodynamic therapy (SDT), which is based on the ultrasonic activation of a sonosensitizer, with low toxicity, noninvasive, deeper penetrability and a promising approach for treating malignant glioma by inducing apoptosis on glioma cells in vitro.
View Article and Find Full Text PDFPeritumoral edema is a key stage in the infiltration and recurrence of glioma. Photodynamic therapy (PDT) increases the extent of peritumoral edema, which leads to a decrease in the effectiveness of PDT in treating glioma. The present study evaluated the effects of PDT combined with torasemide on the levels of matrix metalloproteinase (MMP) 2 and sodium-potassium-chloride cotransporter (NKCC) 1 in peritumoral edema regions of rat glioma.
View Article and Find Full Text PDFIon transporters are important in regulation of ionic homeostasis, cell volume, and cellular signal transduction under physiological conditions. They have recently emerged as important players in cancer progression. In this review, we discussed two important ion transporter proteins, sodium-potassium-chloride cotransporter isoform 1 (NKCC-1) and sodium-hydrogen exchanger isoform 1 (NHE-1) in Glioblastoma multiforme (GBM) and other malignant tumors.
View Article and Find Full Text PDFObjective: To study the effect of simvastatin on neurological functional recovery after traumatic brain injuries (TBI) and the possible molecular mechanisms, we evaluated simvastatin-induced proliferation and differentiation of neural stem cells (NSCs) in vitro and in vivo and possible involvement of Notch-1 signaling in this process.
Methods: Adult Wistar rats were randomly divided into three groups (n=28 for each): sham group, saline-treated group and simvastatin-treated group. Simvastatin was given orally at a dose of 1mg/kg/day starting at day 1 after TBI.
Sodium-hydrogen exchanger isoform 1 (NHE1) plays a role in survival and migration/invasion of several cancers and is an emerging new therapeutic target. However, the role of NHE1 in glioblastoma and the interaction of NHE1 expression and function in glioblastoma cells with cytotoxic temozolomide (TMZ) therapy remain unknown. In this study, we detected high levels of NHE1 protein only in primary human glioma cells (GC), glioma xenografts and glioblastoma, but not in human neural stem cells or astrocytes.
View Article and Find Full Text PDFObjective: The aim of this study was to investigate the effect of bumetanide on peri-tumor edema caused by photodynamic therapy (PDT) of intraparenchymal C6 glioma xenografts.
Methods: Seven days after inoculation with C6 cells, rats with MRI-confirmed glioma received hematoporphyrin monomethyl ether (HMME)-mediated PDT, injection of bumetanide or a combination of the two treatments. After treatment, tumor volume, tumor weight, brain water content, microvessel density, expression of NKCC-1, Zonula occludens-1 (ZO-1), and animal survival time were examined.