Publications by authors named "Damilare O Famakinde"

With the advent of CRISPR (clustered regularly interspaced short palindromic repeat)-based gene drive, present genetic research in schistosomiasis vector control envisages the breeding and release of transgenic schistosome-resistant (TSR) snail vectors to curb the spread of the disease. Although this approach is still in its infancy, studies focussing on production of genetically modified (GM) mosquitoes (including gene-drive mosquitoes) are well advanced and set the pace for other transgenic vector research. Unfortunately, as with other GM mosquitoes, open field release of gene-drive mosquitoes is currently challenged in part by some concerns such as gene drive failure and increased transmission potential for other mosquito-borne diseases among others, which might have adverse effects on human well-being.

View Article and Find Full Text PDF

Schistosomiasis remains the most important tropical snail-borne trematodiasis that threatens many millions of human lives. In achieving schistosomiasis elimination targets, sustainable control of the snail vectors represents a logical approach. Nonetheless, the ineffectiveness of the present snail control interventions emphasizes the need to develop new complementary strategies to ensure more effective control outcomes.

View Article and Find Full Text PDF

Podoconiosis is an endemic, non-infectious, geochemical and non-filarial inflammatory cause of tropical elephantiasis. The immunology of podoconiosis is not yet expressly understood. In spite of this, co-infection and co-morbidity with the infectious, soil-transmitted hookworm disease that causes iron deficiency anemia has been found to be predominant among affected individuals living in co-endemic settings, thus creating a more complex immunological interplay that still has not been investigated.

View Article and Find Full Text PDF

The mosquito-borne lymphatic filariasis (LF) is a parasitic, neglected tropical disease that imposes an unbearable human scourge. Despite the unprecedented efforts in mass drug administration (MDA) and morbidity management, achieving the global LF elimination slated for the year 2020 has been thwarted by limited MDA coverage and ineffectiveness in the chemotherapeutic intervention. Moreover, successful and sustainable elimination of mosquito-vectored diseases is often encumbered by reintroduction and resurgence emanating from human residual or new infections being widely disseminated by the vectors even when chemotherapy proves effective, but especially in the absence of effective vaccines.

View Article and Find Full Text PDF

Schistosoma mansoni, being transmitted by some freshwater Biomphalaria snails, is a major causative agent of human schistosomiasis. In the absence of effective vaccine and alternative drug designs to fight against the disease, and with the limitations of molluscicide application, developing more efficient strategies to interrupt the snail-mediated parasite transmission is being emphasized as potentially instrumental in the efforts toward schistosomiasis elimination, hence, necessitating thorough and comprehensive understanding of the fundamental mechanisms involved in the transmission process. Based on the current advances, this paper presents a concise exposition of the cellular, biochemical, genetic and immunological dynamics of the complex and statge-by-stage interactions between the parasite and its vector in their aquatic environment.

View Article and Find Full Text PDF