Publications by authors named "Damijana M Juric"

The influence of cannabidiol (CBD) on brain development is inadequately understood. Since CBD is considered a non-intoxicating drug, it has attracted great interest concerning its potential medical applicability, including in pregnant women and children. Here, we elucidated the response of perinatal rat cortical neurons and astrocytes to CBD at submicromolar (0.

View Article and Find Full Text PDF

Background Astrocytes maintain central nerve system homeostasis and are relatively resistant to cell death. Dysfunction of cell death mechanisms may underlie glioblastoma genesis and resistance to cancer therapy; therefore more detailed understanding of astrocytic death modalities is needed in order to design effective therapy. The purpose of this study was to determine the effect of VAS2870, a pan-NADPH oxidase inhibitor, on staurosporine-induced cell death in astrocytes.

View Article and Find Full Text PDF

Microcystins (MCs) comprise a group of cyanobacterial toxins with hepatotoxic, nephrotoxic and, possibly, neurotoxic activity in mammals. In order to understand the development of their neurotoxicity we investigated the toxic effects of MC variants, MC-LR, MC-LW and MC-LF, in astrocytes that play a central role in maintaining brain homeostasis. 24h exposure of cultured rat cortical astrocytes to MCs revealed dose-dependent toxicity of MC-LF and MC-LW, but not of MC-LR, observed by significant reduction in cell number, declined viability monitored by MTT test and an increased percentage of apoptotic cells, confirmed by Annexin-V labelling.

View Article and Find Full Text PDF

Astrocytes support the brain through numerous functional interactions in health and disease. The recent advances in our knowledge of astrocyte involvement in various neurological disorders raised up several questions about their role and functioning in the central nervous system. From the evidence discussed in this review, we show that histamine importantly influences the main astrocytic activities such as ion homeostasis, energy metabolism, neurotransmitter clearance, neurotrophic activity and immune response.

View Article and Find Full Text PDF

In astrocytes, carbon monoxide (CO) poisoning causes oxidative stress and mitochondrial dysfunction accompanied by caspase and calpain activation. Impairment in astrocyte function can be time-dependently reduced by hyperbaric (3bar) oxygen (HBO). Due to the central role of astrocytes in maintaining neuronal function by offering neurotrophic support we investigated the hypothesis that HBO therapy may exert beneficial effect on acute CO poisoning-induced impairment in intrinsic neurotrophic activity.

View Article and Find Full Text PDF

Carbon monoxide (CO) poisoning causes neuronal and glial apoptosis that can result in delayed neurological symptoms. The damage of brain cells can be prevented by oxygen therapy. Based on the central role of astrocytes in maintaining neuronal function and viability we investigated the toxic effects of 3000ppm CO in air followed by 24h of normoxia and evaluated the possible protective influence of 100% normobaric oxygen or 100% oxygen at a pressure of 3bar (hyperbaric) against CO poisoning in these cells.

View Article and Find Full Text PDF

Background: Metrifonate is an inhibitor of acetylcholinesterase (AChE). Several studies confirmed its positive effects on cognitive impairment in Alzheimer's disease but it was due to adverse events withdrawn from clinical trials. Based on the importance of astrocytes in physiological and pathological brain activities we investigated the impact of metrifonate and, for comparison, acetylcholine on intrinsic neurotrophic activity in these cells.

View Article and Find Full Text PDF

Recently we reported that cultured rat cortical astrocytes express histamine H3 receptor that is functionally coupled to Gi/o proteins and participates to the stimulatory effect of histamine. Due to the lack of data on the distribution of histamine H3 receptors on glial cells we further investigated their presence in cultured astrocytes from different brain regions. Real-time PCR was performed to examine the expression of native histamine H3 receptor in cultured rat astrocytes from cortex,cerebellum, hippocampus and striatum.

View Article and Find Full Text PDF

Neurotrophin-3 (NT-3) is produced by astrocytes, in addition to neurons, and monoamine neurotransmitters play a role in controlling NT-3 synthesis. The impact of histamine (HA) on the regulation of NT-3 synthesis in cultured astrocytes has not been studied. We evaluated the involvement of histamine receptors and intracellular mechanisms in the regulation of NT-3 production by HA.

View Article and Find Full Text PDF

Astrocytes actively control neuronal activity and synaptic transmission and by producing various neurotrophic factors represent an important local cellular source of trophic support in the normal and diseased brain. Our present study showed the ability of astrocytes to synthesize neurotrophin-3 (NT-3) and the active involvement of the monoamine neurotransmitters noradrenaline, adrenaline, dopamine, and serotonin, as well as basic intracellular second messenger systems, in the regulation of NT-3 production in neonatal rat cortical astrocytes. Using a new NT-3 specific enzyme-immunoassay, we showed that neonatal rat cortical and, for comparison, cerebellar astrocytes in primary culture can synthesize NT-3; the basal cellular content of NT-3 protein was 23.

View Article and Find Full Text PDF

Brain-derived neurotrophic factor (BDNF) synthesis in astrocytes induced by noradrenaline (NA) is a receptor-mediated process utilizing two parallel adrenergic pathways: beta1/beta2-adrenergic/cAMP and the novel alpha1-adrenergic/PKC pathway. BDNF is produced by astrocytes, in addition to neurons, and the noradrenergic system plays a role in controlling BDNF synthesis. Since astrocytes express various subtypes of alpha- and beta-adrenergic receptors that have the potential to be activated by synaptically released NA, we focused our present study on the mediatory role of adrenergic receptors in the noradrenergic up-regulation of BDNF synthesis in cultured neonatal rat cortical astrocytes.

View Article and Find Full Text PDF

Astrocytes as an active part of the tripartite synapse can respond to the synaptically released neurotransmitters. Because brain-derived neurotrophic factor (BDNF) is produced by astrocytes, in addition to neurons, we focused our present study on the regulatory effects of monoamines noradrenaline (NA), serotonin (5-HT), and dopamine (DA) on the synthesis of BDNF protein in rat neonatal astrocytes from specific brain regions (cortex, cerebellum). All tested neurotransmitters are able to potently and transiently increase BDNF cellular contents; their maximal effects are dose and time dependent and differ between the two brain regions.

View Article and Find Full Text PDF

Using a new brain-derived neurotrophic factor (BDNF) specific enzyme-immunoassay, we determined the basal cellular content of BDNF protein in neonatal rat astrocytes in primary culture, thus confirming the ability of astrocytes to synthesize BDNF in addition to nerve growth factor (NGF). We subsequently monitored the influence of different pharmacological agents: neurotransmitter receptor agonists, cytokines, and second messenger up-regulators, on the synthesis of BDNF and NGF. Marked differences in the regulation of their synthesis by the above pharmacological agents were observed in our study.

View Article and Find Full Text PDF