Modern cancer immunotherapy has revolutionised oncology and carries the potential to radically change the approach to cancer treatment. However, numerous questions remain to be answered to understand immunotherapy response better and further improve the benefit for future cancer patients. Computational models are promising tools that can contribute to accelerated immunotherapy research by providing new clues and hypotheses that could be tested in future trials, based on preceding simulations in addition to the empirical rationale.
View Article and Find Full Text PDFBackground Immune checkpoint inhibitors have changed the paradigm of cancer treatment; however, non-invasive biomarkers of response are still needed to identify candidates for non-responders. We aimed to investigate whether immunotherapy [18F]FDG PET radiomics signature (iRADIOMICS) predicts response of metastatic non-small-cell lung cancer (NSCLC) patients to pembrolizumab better than the current clinical standards. Patients and methods Thirty patients receiving pembrolizumab were scanned with [18F]FDG PET/CT at baseline, month 1 and 4.
View Article and Find Full Text PDFMetastatic cancer patients invariably develop treatment resistance. Different levels of resistance lead to observed heterogeneity in treatment response. The main goal was to evaluate treatment response heterogeneity with a computation model simulating the dynamics of drug-sensitive and drug-resistant cells.
View Article and Find Full Text PDFCancer immunotherapy is a rapidly developing field, with numerous drugs and therapy combinations waiting to be tested in pre-clinical and clinical settings. However, the costly and time-consuming trial-and-error approach to development of new treatment paradigms creates a research bottleneck, motivating the development of complementary approaches. Computational modelling is a compelling candidate for this task, however, difficulties associated with the validation of such models limit their use in pre-clinical and clinical settings.
View Article and Find Full Text PDF