Publications by authors named "Damien Y Colin"

The worldwide use of the broad-spectrum antimicrobial trimethoprim (TMP) has induced the rise of TMP-resistant microorganisms. In addition to resistance-causing mutations of the microbial chromosomal dihydrofolate reductase (Dfr), the evolutionarily and structurally unrelated type II Dfrs (DfrBs) have been identified in TMP-resistant microorganisms. DfrBs are intrinsically TMP-resistant and allow bacterial proliferation when the microbial chromosomal Dfr is TMP-inhibited, making these enzymes important targets for inhibitor development.

View Article and Find Full Text PDF

A competitive binding assay based on localized surface plasmon resonance (LSPR) of folic acid-functionalized gold nanoparticles (FA-AuNPs) and human dihydrofolate reductase enzyme (hDHFR) was developed to detect nanomolar to micromolar concentrations of the widely applied anti-cancer drug, methotrexate (MTX). By the nature of the competitive assay for MTX, the LSPR shift from specific binding between FA-AuNPs and the free enzyme was inversely proportional to the concentration of MTX. In addition, the dynamic range for MTX was tuned from 10(-11) to 10(-6) M by varying the concentration of hDHFR from 1 to 100 nM.

View Article and Find Full Text PDF

Trimethoprim is an antibiotic that targets bacterial dihydrofolate reductase (DHFR). A plasmid-encoded DHFR known as R67 DHFR provides resistance to trimethoprim in bacteria. To better understand the mechanism of this homotetrameric enzyme, a tandem dimer construct was created that linked two monomeric R67 DHFR subunits together and mutated the sequence of residues 66-69 of the first subunit from VQIY to INSF.

View Article and Find Full Text PDF

A peptide self-assembled monolayer (SAM) was designed to bind His-tagged biomolecules for surface plasmon resonance (SPR) bioanalysis, which was applied for the determination of K(d) for small ligand screening against CD36. Nonspecific adsorption could be minimized using penta- and hexa-peptide monolayers. In particular, monolayers consisting of 3-mercaptopropionyl-leucinyl-histidinyl-aspartyl-leucinyl-histidinyl-aspartic acid (3-Mpa-LHDLHD) exhibited little (12 ng cm(-2)) nonspecific adsorption in crude serum.

View Article and Find Full Text PDF

Cystic fibrosis is associated with pancreatic insufficiency and acidic intraluminal conditions that limit the action of pancreatic enzyme replacement therapy, especially that of lipase. Directed evolution combined with rational design was used in the aim of improving the performances of the human pancreatic lipase at acidic pH. We set up a method for screening thousands of lipase variants for activity at low pH.

View Article and Find Full Text PDF

Within the scope of improving the efficiency of pancreatic enzyme replacement therapy in cystic fibrosis, the feasibility of shifting the pH-activity profile of pancreatic lipase toward acidic values was investigated by site specific mutagenesis in different regions of the catalytic cavity. We have shown that introducing a negative charge close to the catalytic histidine induced a shift of the pH optimum toward acidic values but strongly reduced the lipase activity. On the other hand, a negative charge in the entrance of the catalytic cleft gives rise to a lipase with improved properties and twice more active than the native enzyme at acidic pH.

View Article and Find Full Text PDF