Marine plankton form complex communities of interacting organisms at the base of the food web, which sustain oceanic biogeochemical cycles and help regulate climate. Although global surveys are starting to reveal ecological drivers underlying planktonic community structure and predicted climate change responses, it is unclear how community-scale species interactions will be affected by climate change. Here, we leveraged Oceans sampling to infer a global ocean cross-domain plankton co-occurrence network-the community interactome-and used niche modeling to assess its vulnerabilities to environmental change.
View Article and Find Full Text PDFUnderstanding the interactions between microbial communities and their environment sufficiently to predict diversity on the basis of physicochemical parameters is a fundamental pursuit of microbial ecology that still eludes us. However, modeling microbial communities is problematic, because (i) communities are complex, (ii) most descriptions are qualitative, and (iii) quantitative understanding of the way communities interact with their surroundings remains incomplete. One approach to overcoming such complications is the integration of partial qualitative and quantitative descriptions into more complex networks.
View Article and Find Full Text PDFMonte Carlo simulation (MCS) plays a key role in medical applications, especially for emission tomography and radiotherapy. However MCS is also associated with long calculation times that prevent its use in routine clinical practice. Recently, graphics processing units (GPU) became in many domains a low cost alternative for the acquisition of high computational power.
View Article and Find Full Text PDF