We investigate analytically and computationally the dynamics of two-dimensional needle crystal growth from the melt in a narrow channel. Our analytical theory predicts that, in the low supersaturation limit, the growth velocity V decreases in time t as a power law V∼t^{-2/3}, which we validate by phase-field and dendritic-needle-network simulations. Simulations further reveal that, above a critical channel width Λ≈5l_{D}, where l_{D} is the diffusion length, needle crystals grow with a constant V
Spatially extended cellular and dendritic array structures forming during solidification processes such as casting, welding, or additive manufacturing are generally polycrystalline. Both the array structure within each grain and the larger scale grain structure determine the performance of many structural alloys. How those two structures coevolve during solidification remains poorly understood.
View Article and Find Full Text PDFThis work presents the synthesis of SiC nanowires floating in a gas stream through the vapour-liquid-solid (VLS) mechanism using an aerosol of catalyst nanoparticles. These conditions lead to ultrafast growth at 8.5 μm s (maximum of 50 μm s), which is up to 3 orders of magnitude above conventional substrate-based chemical vapour deposition.
View Article and Find Full Text PDF