Publications by authors named "Damien Maura"

Intestinal barrier derangement allows intestinal bacteria and their products to translocate to the systemic circulation. Pseudomonas aeruginosa (PA) superimposed infection in critically ill patients increases gut permeability and leads to gut-driven sepsis. PA infections are challenging due to multi-drug resistance (MDR), biofilms, and/or antibiotic tolerance.

View Article and Find Full Text PDF

The prevalence of atopic diseases has been steadily increasing since the mid twentieth century, a rise that has been linked to modern hygienic lifestyles that limit exposure to microbes and immune system maturation. Overactive type 2 CD4+ helper T (Th2) cells are known to be closely associated with atopy and represent a key target for treatment. In this study, we present an initial characterization of ammonia oxidizing bacteria (AOB) Nitrosomonas eutropha D23, an environmental microbe that is not associated with human pathology, and show AOB effectively suppress the polarization of Th2 cells and production of Th2-associated cytokines (IL-5, IL-13, and IL-4) by human peripheral blood mononuclear cells (PBMC).

View Article and Find Full Text PDF

Quorum sensing (QS) systems play global regulatory roles in bacterial virulence. They synchronize the expression of multiple virulence factors and they control and modulate bacterial antibiotic tolerance systems and host defense mechanisms. Therefore, it is important to obtain knowledge about QS modes of action and to test putative therapeutics that may interrupt QS actions in the context of infections.

View Article and Find Full Text PDF

biofilms contribute to its survival on biotic and abiotic surfaces and represent a major clinical threat due to their high tolerance to antibiotics. Therefore, the discovery of antibiofilm agents may hold great promise. We show that pharmacological inhibition of the quorum-sensing regulator MvfR (PqsR) using a benzamide-benzimidazole compound interferes with biofilm formation and potentiates biofilm sensitivity to antibiotics.

View Article and Find Full Text PDF

is a Gram-negative bacterium, which causes opportunistic infections in immuno-compromised individuals. Due to its multiple resistances toward antibiotics, the development of new drugs is required. Interfering with Quorum Sensing (QS), a cell-to-cell communication system, has shown to be highly efficient in reducing pathogenicity.

View Article and Find Full Text PDF

Pseudomonas aeruginosa is an important nosocomial pathogen that is frequently recalcitrant to available antibiotics, underlining the urgent need for alternative therapeutic options against this pathogen. Targeting virulence functions is a promising alternative strategy as it is expected to generate less-selective resistance to treatment compared to antibiotics. Capitalizing on our nonligand-based benzamide-benzimidazole (BB) core structure compounds reported to efficiently block the activity of the P.

View Article and Find Full Text PDF

Background And Aims: Adherent invasive Escherichia coli [AIEC] are abnormally predominant on the ileal mucosa of Crohn's disease [CD] patients. They bind to the CEACAM6 receptor expressed on the surface of epithelial cells. We aimed to assess the potential of bacteriophages, viruses infecting bacteria, to decrease the levels of AIEC bacteria associated with the intestinal mucosa.

View Article and Find Full Text PDF

As antibiotic resistance remains a major public health threat, anti-virulence therapy research is gaining interest. Hundreds of potential anti-virulence compounds have been examined, but very few have made it to clinical trials and none have been approved. This review surveys the current anti-virulence research field with a focus on the highly resistant and deadly ESKAPE pathogens, especially Pseudomonas aeruginosa.

View Article and Find Full Text PDF

The mechanisms by which pathogens evade elimination without affecting host fitness are not well understood. For the pathogen Pseudomonas aeruginosa, this evasion appears to be triggered by excretion of the quorum-sensing molecule 2-aminoacetophenone, which dampens host immune responses and modulates host metabolism, thereby enabling the bacteria to persist at a high burden level. Here, we examined how 2-aminoacetophenone trains host tissues to become tolerant to a high bacterial burden, without compromising host fitness.

View Article and Find Full Text PDF
Article Synopsis
  • - Pseudomonas aeruginosa is tough to eliminate with antibiotics due to its numerous virulence factors, and MvfR (PqsR) is believed to control several of these factors indirectly, as well as directly regulating an additional 35 genes linked to virulence and other essential cellular processes.
  • - The study highlights that MvfR plays a crucial role in managing antioxidant systems that help the bacteria survive harsh conditions, such as exposure to reactive oxygen species and antibiotic treatment, indicating a sophisticated self-defense mechanism.
  • - Researchers propose a new model for the regulation of P. aeruginosa's quorum sensing systems, challenging the traditional hierarchical view and suggesting that MvfR is a key target for developing anti-virulence
View Article and Find Full Text PDF

The Gram-negative bacterial pathogen Pseudomonas aeruginosa uses three interconnected intercellular signaling systems regulated by the transcription factors LasR, RhlR, and MvfR (PqsR), which mediate bacterial cell-cell communication via small-molecule natural products and control the production of a variety of virulence factors. The MvfR system is activated by and controls the biosynthesis of the quinolone quorum sensing factors HHQ and PQS. A key step in the biosynthesis of these quinolones is catalyzed by the anthranilyl-CoA synthetase PqsA.

View Article and Find Full Text PDF

Uropathogenic Escherichia coli (UPEC) is the leading cause of urinary tract infections (UTIs) worldwide, causing over 150 million clinical cases annually. There is currently no specific treatment addressing the asymptomatic carriage in the gut of UPEC before they initiate UTIs. This study investigates the efficacy of virulent bacteriophages to decrease carriage of gut pathogens.

View Article and Find Full Text PDF

Bacterial programmed cell death and quorum sensing are direct examples of prokaryote group behaviors, wherein cells coordinate their actions to function cooperatively like one organism for the benefit of the whole culture. We demonstrate here that 2-n-heptyl-4-hydroxyquinoline-N-oxide (HQNO), a Pseudomonas aeruginosa quorum-sensing-regulated low-molecular-weight excreted molecule, triggers autolysis by self-perturbing the electron transfer reactions of the cytochrome bc1 complex. HQNO induces specific self-poisoning by disrupting the flow of electrons through the respiratory chain at the cytochrome bc1 complex, causing a leak of reducing equivalents to O2 whereby electrons that would normally be passed to cytochrome c are donated directly to O2.

View Article and Find Full Text PDF
Article Synopsis
  • Antibiotic resistance in bacteria like Pseudomonas aeruginosa makes treating infections difficult; researchers are targeting a specific path (MvfR-regulated quorum sensing) to develop new treatments.
  • Innovative compounds have been discovered that can block harmful signaling in bacteria without killing them, which helps prevent the bacteria from developing resistance.
  • These new compounds are effective both in laboratory settings and in animal models, reducing antibiotic-tolerant bacteria and providing a promising direction for future therapies against tough infections.
View Article and Find Full Text PDF

Bacterial persistence, which is observed in a broad range of microbial species, is the capacity of a bacterial cell subpopulation called "persisters" to tolerate exposure to normally lethal concentrations of bactericidal antibiotics. This ability, which is not due to antibiotic-resistant mutants, has been implicated in antibiotic treatment failures and may account for latent, chronic, and relapsing infections. Antibiotic tolerant/Persister (AT/P) cells have been notoriously difficult to study due to their low frequency and transient nature.

View Article and Find Full Text PDF

Bacteria can be refractory to antibiotics due to a sub-population of dormant cells, called persisters that are highly tolerant to antibiotic exposure. The low frequency and transience of the antibiotic tolerant "persister" trait has complicated elucidation of the mechanism that controls antibiotic tolerance. In this study, we show that 2' Amino-acetophenone (2-AA), a poorly studied but diagnostically important small, volatile molecule produced by the recalcitrant gram-negative human pathogen Pseudomonas aeruginosa, promotes antibiotic tolerance in response to quorum-sensing (QS) signaling.

View Article and Find Full Text PDF

Bacteriophages were discovered in the early 20th century and rapidly used to treat bacterial infections in humans. As the first specific antibacterial agents, they were used worldwide until antibiotics ramped up. Thereafter, rapidly forgotten, they became the favorite toolbox for researchers that used them to elucidate some of the most fundamental aspects of the cellular life at the molecular level.

View Article and Find Full Text PDF

We recently described the targeting of O104:H4 in mouse gut by several virulent bacteriophages, highlighting several issues relating to virus-host interactions, which we discuss further in this addendum to the original publication.

View Article and Find Full Text PDF

Background: There are several methods for quantitating bacterial cells, each with advantages and disadvantages. The most common method is bacterial plating, which has the advantage of allowing live cell assessment through colony forming unit (CFU) counts but is not well suited for high throughput screening (HTS). On the other hand, spectrophotometry is adaptable to HTS applications but does not differentiate between dead and living bacteria and has low sensitivity.

View Article and Find Full Text PDF

In vivo bacteriophage targeting of enteroaggregative Escherichia coli (EAEC) was assessed using a mouse intestinal model of colonization with the O104:H4 55989Str strain and a cocktail of three virulent bacteriophages. The colonization model was shown to mimic asymptomatic intestinal carriage found in humans. The addition of the cocktail to drinking water for 24 h strongly decreased ileal and weakly decreased fecal 55989Str concentrations in a dose-dependent manner.

View Article and Find Full Text PDF

Bacteriophages have been known to be present in the gut for many years, but studies of relationships between these viruses and their hosts in the intestine are still in their infancy. We isolated three bacteriophages specific for an enteroaggregative O104:H4 Escherichia coli (EAEC) strain responsible for diarrhoeal diseases in humans. We studied the replication of these bacteriophages in vitro and in vivo in a mouse model of gut colonization.

View Article and Find Full Text PDF

Antibiotic-resistant bacteria are an increasing source of concern in all environments in which these drugs have been used. More stringent regulations have led to a slow but sure decrease in antibiotic use in the food industry worldwide, but have also stimulated the search for alternative antibacterial agents. In medicine, the number of people infected with pan-resistant bacteria is driving research to develop new treatments.

View Article and Find Full Text PDF

Multidrug-resistant bacteria are the cause of an increasing number of deadly pulmonary infections. Because there is currently a paucity of novel antibiotics, phage therapy--the use of specific viruses that infect bacteria--is now more frequently being considered as a potential treatment for bacterial infections. Using a mouse lung-infection model caused by a multidrug resistant Pseudomonas aeruginosa mucoid strain isolated from a cystic fibrosis patient, we evaluated bacteriophage treatments.

View Article and Find Full Text PDF

Antibiotic-resistant bacteria threaten life worldwide. Although new antibiotics are scarce, the use of bacteriophages, viruses that infect bacteria, is rarely proposed as a means of offsetting this shortage. Doubt also remains widespread about the efficacy of phage therapy despite recent encouraging results.

View Article and Find Full Text PDF