Publications by authors named "Damien M Callahan"

Previous studies demonstrated that acute fatiguing exercise transiently reduces whole-muscle stiffness, which might contribute to increased risk of injury and impaired contractile performance. We sought to elucidate potential intracellular mechanisms underlying these reductions. To that end, the cellular passive Young's modulus was measured in muscle fibres from healthy, young males and females.

View Article and Find Full Text PDF

Mongold, SJ, Ricci, AW, Hahn, ME, and Callahan, DM. Skeletal muscle compliance and echogenicity in resistance-trained and nontrained women. J Strength Cond Res 38(4): 671-680, 2024-Noninvasive assessment of muscle mechanical properties in clinical and performance settings tends to rely on manual palpation and emphasizes examination of musculotendinous stiffness.

View Article and Find Full Text PDF

Experimental techniques in single human skeletal muscle cells require manual dissection. Unlike other mammalian species, human skeletal muscle is characterized by a heterogeneous mixture of myosin heavy chain (MHC) isoforms, typically used to define "fiber type," which profoundly influences cellular function. Therefore, it is beneficial to predict MHC isoform at the time of dissection, facilitating a more balanced fiber-type distribution from a potentially imbalanced sample.

View Article and Find Full Text PDF

Older adults can experience periods of inactivity related to disease or illness, which can hasten the development of physical disability, in part, through reductions in skeletal muscle strength and power. To date no study has characterized adaptations in skeletal muscle physical function in response to reduced daily physical activity. Participants (15 men, aged 69 ± 2 years; 15 women, aged 68 ± 4 years) restricted their daily steps (<750 steps/day) while being energy restricted (-500 kcal/day) for 2 weeks before returning to normal activity levels during recovery (RC; 1 week).

View Article and Find Full Text PDF

How breast cancer and its treatments affect skeletal muscle is not well defined. To address this question, we assessed skeletal muscle structure and protein expression in 13 women who were diagnosed with breast cancer and receiving adjuvant chemotherapy following tumor resection and 12 nondiseased controls. Breast cancer patients showed reduced single-muscle fiber cross-sectional area and fractional content of subsarcolemmal and intermyofibrillar mitochondria.

View Article and Find Full Text PDF

High-intensity resistance exercise (REX) training increases physical capacity, in part, by improving muscle cell size and function. Moderate-intensity REX, which is more feasible for many older adults with disease and/or disability, also increases physical function, but the mechanisms underlying such improvements are not understood. Therefore, we measured skeletal muscle structure and function from the molecular to the tissue level in response to 14 wk of moderate-intensity REX in physically inactive older adults with knee osteoarthritis ( = 17; 70 ± 1 yr).

View Article and Find Full Text PDF

Background & Aims: Cancer patients frequently experience weight loss, with negative consequences for functionality and prognosis. The extent to which muscle atrophy contributes to weight loss, however, is not clear, as few studies have directly measured muscle fiber morphology in cancer patients.

Methods: Whole body and regional tissue composition were measured, along with the cross-sectional area (CSA) and fiber type of mechanically-isolated, single muscle fibers, in 19 cancer patients (8 with a history of weight loss, 11 weight-stable) and 15 non-diseased controls.

View Article and Find Full Text PDF

Key Points: Muscle fatigue can be defined as the transient decrease in maximal force that occurs in response to muscle use. Fatigue develops because of a complex set of changes within the neuromuscular system that are difficult to evaluate simultaneously in humans. The skeletal muscle of older adults fatigues less than that of young adults during static contractions.

View Article and Find Full Text PDF

We examined the effect of knee osteoarthritis on the rate of torque development (RTD) of the knee extensors in older adults with advanced-stage knee osteoarthritis (OA; n=15) and recreationally-active controls (n=15) of similar age, sex and health status, as well as the relationship between RTD and the size and contractility of single muscle fibers. OA participants had lower RTD when expressed in absolute terms (Nm/ms). There were sex differences in peak RTD (P<0.

View Article and Find Full Text PDF

Introduction: Statins have well-known benefits on cardiovascular mortality, though up to 15% of patients experience side effects. With guidelines from the American Heart Association, American College of Cardiology, and American Diabetes Association expected to double the number of statin users, the overall incidence of myalgia and myopathy will increase.

Methods: We evaluated skeletal muscle structure and contractile function at the molecular, cellular, and whole tissue levels in 12 statin tolerant and 12 control subjects.

View Article and Find Full Text PDF

In older adults, we examined the effect of chronic muscle disuse on skeletal muscle structure at the tissue, cellular, organellar, and molecular levels and its relationship to muscle function. Volunteers with advanced-stage knee osteoarthritis (OA, n = 16) were recruited to reflect the effects of chronic lower extremity muscle disuse and compared with recreationally active controls (n = 15) without knee OA but similar in age, sex, and health status. In the OA group, quadriceps muscle and single-fiber cross-sectional area were reduced, with the largest reduction in myosin heavy chain IIA fibers.

View Article and Find Full Text PDF

Skeletal muscle contractile function declines with aging, disease, and disuse. In vivo muscle contractile function depends on a variety of factors, but force, contractile velocity and power generating capacity ultimately derive from the summed contribution of single muscle fibers. The contractile performance of these fibers are, in turn, dependent upon the isoform and function of myofilament proteins they express, with myosin protein expression and its mechanical and kinetic characteristics playing a predominant role.

View Article and Find Full Text PDF

Physical inactivity that accompanies ageing and disease may hasten disability by reducing skeletal muscle contractility. To characterize skeletal muscle functional adaptations to muscle disuse, we compared contractile performance at the molecular, cellular and whole‐muscle levels in healthy active older men and women (n = 15) and inactive older men and women with advanced‐stage, symptomatic knee osteoarthritis (OA) (n = 16). OA patients showed reduced (P < 0.

View Article and Find Full Text PDF

Age-related loss of skeletal muscle mass and function is implicated in the development of disease and physical disability. However, little is known about how age affects skeletal muscle structure at the cellular and ultrastructural levels or how such alterations impact function. Thus we examined skeletal muscle structure at the tissue, cellular, and myofibrillar levels in young (21-35 yr) and older (65-75 yr) male and female volunteers, matched for habitual physical activity level.

View Article and Find Full Text PDF

We hypothesize that age-related skeletal muscle dysfunction and physical disability may be partially explained by alterations in the function of the myosin molecule. To test this hypothesis, skeletal muscle function at the whole muscle, single fiber, and molecular levels was measured in young (21-35 yr) and older (65-75 yr) male and female volunteers with similar physical activity levels. After adjusting for muscle size, older adults had similar knee extensor isometric torque values compared with young, but had lower isokinetic power, most notably in women.

View Article and Find Full Text PDF

Introduction: Whereas deficits in muscle function, particularly power production, develop in old age and are risk factors for mobility impairment, a complete understanding of muscle fatigue during dynamic contractions is lacking. We tested hypotheses related to torque-producing capacity, fatigue resistance, and variability of torque production during repeated maximal contractions in healthy older, mobility-impaired older, and young women.

Methods: Knee extensor fatigue (decline in torque) was measured during 4 min of dynamic contractions.

View Article and Find Full Text PDF

Many patients with cancer experience physical disability following diagnosis, although little is known about the mechanisms underlying these functional deficits. To characterize skeletal muscle adaptations to cancer in humans, we evaluated skeletal muscle structure and contractile function at the molecular, cellular, whole-muscle, and whole-body level in 11 patients with cancer (5 cachectic, 6 noncachectic) and 6 controls without disease. Patients with cancer showed a 25% reduction in knee extensor isometric torque after adjustment for muscle mass (P < 0.

View Article and Find Full Text PDF

The pathway of voluntary joint torque production includes motor neuron recruitment and rate-coding, sarcolemmal depolarization and calcium release by the sarcoplasmic reticulum, force generation by motor proteins within skeletal muscle, and force transmission by tendon across the joint. The direct source of energetic support for this process is ATP hydrolysis. It is possible to examine portions of this physiologic pathway using various in vivo and in vitro techniques, but an integrated view of the multiple processes that ultimately impact joint torque remains elusive.

View Article and Find Full Text PDF

Purpose Of Review: This review considers evidence that the clinical condition of heart failure alters skeletal muscle protein synthesis and/or breakdown to promote skeletal muscle wasting and functional decrements that ultimately contribute to the symptomology of the disease.

Recent Findings: Advanced HF is frequently accompanied by muscle atrophy and a cachectic phenotype. Protein metabolic derangements that promote this phenotype are understudied and poorly understood.

View Article and Find Full Text PDF

There is discrepancy in the literature regarding the degree to which old age affects muscle bioenergetics. These discrepancies are likely influenced by several factors, including variations in physical activity (PA) and differences in the muscle group investigated. To test the hypothesis that age may affect muscles differently, we quantified oxidative capacity of tibialis anterior (TA) and vastus lateralis (VL) muscles in healthy, relatively sedentary younger (8 YW, 8 YM; 21-35 years) and older (8 OW, 8 OM; 65-80 years) adults.

View Article and Find Full Text PDF

It is generally accepted that the muscles of aged individuals contract with less force, have slower relaxation rates, and demonstrate a downward shift in their force-velocity relationship. The factors mediating age-related differences in skeletal muscle fatigue are less clear. The present study was designed to test the hypothesis that age-related shifts in the force-velocity relationship impact the fatigue response in a velocity-dependent manner.

View Article and Find Full Text PDF

It is well established that exercise training results in increased muscle oxidative capacity. Less is known about how oxidative capacities in distinct muscles, in the same individual, are affected by different levels of physical activity. We hypothesized that 1) trained individuals would have higher oxidative capacity than untrained individuals in both tibialis anterior (TA) and vastus lateralis (VL) and 2) oxidative capacity would be higher in TA than VL in untrained, but not in trained, individuals.

View Article and Find Full Text PDF

The question of whether skeletal muscle fatigue is preserved or enhanced in older adults is a point of controversy. Disparate findings may be attributed to differences in subject population and study protocols, including contraction mode. The purpose of this study was to test the hypotheses that healthy older (65-80 years of age, 8 males and 8 females) adults who were matched to young adults (21-35 years of age; 8 males and 8 females) with similar physical activity levels would: (1) fatigue less during isometric knee extensor (KE) contractions, but (2) would show similar fatigue during dynamic KE contractions performed at 120 degrees s(-1).

View Article and Find Full Text PDF

Background And Aims: This study investigated whether high-velocity high-power training (POW) improved lower extremity muscle power and quality in functionally-limited elders greater than traditional slow-velocity progressive resistance training (STR).

Methods: Fifty-seven community-dwelling older adults aged 74.2+/-7 (range 65-94 yrs), Short Physical Performance Battery score 7.

View Article and Find Full Text PDF