Publications by authors named "Damien Guironnet"

Additive manufacturing capable of controlling and dynamically modulating structures down to the nanoscopic scale remains challenging. By marrying additive manufacturing with self-assembly, we develop a UV (ultra-violet)-assisted direct ink write approach for on-the-fly modulation of structural color by programming the assembly kinetics through photo-cross-linking. We design a photo-cross-linkable bottlebrush block copolymer solution as a printing ink that exhibits vibrant structural color (i.

View Article and Find Full Text PDF

Functionalizing inorganic particles with organic ligands is a common technique for heterogenizing organometallic catalysts. We describe how coordinating molecular platinum to silica nanoparticles functionalized with a high density of norbornene ligands causes unexpected latency of the catalytic activity in hydrosilylation reactions when compared to an identical reaction in which the norbornene is not tethered (2 % vs 97 % conversion in 1 h). Performing the hydrosilylation at elevated temperature (70 °C) suppresses this activity delay, suggesting the usefulness of this technique towards temperature-triggered catalysis.

View Article and Find Full Text PDF

Although polyethylene (PE) and polypropylene (PP) are by far the world's largest volume plastics, only a tiny fraction of these energy-rich polyolefins are currently recycled. Depolymerization of PE to its constituent monomer, ethylene, is highly endothermic and conventionally accessible only through unselective, high-temperature pyrolysis. Here, we provide experimental demonstrations of our recently proposed tandem catalysis strategy, which uses ethylene to convert PE to propylene, the commodity monomer used to make PP.

View Article and Find Full Text PDF

Bottlebrush polymers are a class of semiflexible, hierarchical macromolecules with unique potential for shape-, architecture-, and composition-based structure-property design. It is now well-established that in dilute to semidilute solution, bottlebrush homopolymers adopt a wormlike conformation, which decreases in extension (persistence length) as the concentration and molecular overlap increase. By comparison, the solution phase self-assembly of bottlebrush diblock copolymers (BBCP) in a good solvent remains poorly understood, despite critical relevance for solution processing of ordered phases and photonic crystals.

View Article and Find Full Text PDF

Favorable polymer-substrate interactions induce surface orientation fields in block copolymer (BCP) melts. In linear BCP processed near equilibrium, alignment of domains generally persists for a small number of periods (∼4-6 ) before randomization of domain orientation. Bottlebrush BCP are an emerging class of materials with distinct chain dynamics stemming from substantial molecular rigidity, enabling rapid assembly at ultrahigh (>100 nm) domain periodicities with strong photonic properties (structural color).

View Article and Find Full Text PDF

The synthesis of stereoregular telechelic polypropylene (PP) and their use to access triblock amphiphilic copolymers with the PP block located in the center is described. The strategy consists of selectively copolymerizing propylene and a di-functional co-monomer (1,3-diisopropenylbenzene) to yield a α,ω-substituted polypropylene. Initiation of the copolymerization favors insertion of DIB over propylene; propagation steps favor insertion of propylene.

View Article and Find Full Text PDF
Article Synopsis
  • This study explores how to improve additive manufacturing of functional materials by combining self-assembly techniques with 3D printing to create tunable photonic crystals using bottlebrush block copolymers.
  • The resulting photonic crystals can reflect light at different wavelengths, ranging from blue to red, due to changes in the spacing of their internal structures, observed to be greater than 70 nm.
  • The research identifies that controlling the polymer's shape during the printing process leads to variations in microstructure, enabling real-time adjustments of material properties in potentially diverse applications.
View Article and Find Full Text PDF

The properties of a polymer are known to be intrinsically related to its molecular weight distribution (MWD); however, previous methodologies of MWD control do not use a design and result in arbitrary shaped MWDs. Here we report a precise design to synthesis protocol for producing a targeted MWD design with a simple to use, and chemistry agnostic computer-controlled tubular flow reactor. To support the development of this protocol, we constructed general reactor design rules by combining fluid mechanical principles, polymerization kinetics, and experiments.

View Article and Find Full Text PDF

A structure-property-process relation is established for a diblock bottlebrush copolymer solution, through a combination of rheo-neutron scattering, imaging, and rheological measurements. Polylactic acid-b-polystyrene diblock bottlebrush copolymers were dispersed in toluene with a concentration of 175 mg ml, where they self-assembled into a lamellar phase. All measurements were carried out at 5 °C.

View Article and Find Full Text PDF

Of all plastics, the most abundantly produced is polyethylene, most of which is destined for landfills, shipping ports, and natural environments. The limited degradability and recyclability of this synthetic polymer motivates the development of chemical recycling methods. One possible approach consists of selective depolymerization to propylene with tandem olefin metathesis and double bond isomerization catalysts.

View Article and Find Full Text PDF

The mechanism of ring-opening metathesis polymerization (ROMP) for a set of functionalized norbornenyl monomers initiated by a Grubbs third generation precatalyst [(HIMes)(pyr)(Cl)Ru═CHPh] was investigated. Through a series of C/C and H/H kinetic isotope effect studies, the rate-determining step for the polymerization was determined to be the formation of the metallacyclobutane ring. This experimental result was further validated through DFT calculations showing that the highest energy transition state is metallacyclobutane formation.

View Article and Find Full Text PDF

Bottlebrush polymers are a class of macromolecules that have recently found use in a wide variety of materials, ranging from lubricating brushes and nanostructured coatings to elastomeric gels that exhibit structural colors. These polymers are characterized by dense branches extending from a central backbone and thus have properties distinct from linear polymers. It remains a challenge to specifically understand conformational properties of these molecules, due to the wide range of architectural parameters that can be present in a system, and thus there is a need to accurately characterize and model these molecules.

View Article and Find Full Text PDF

Shape, size, and composition are the most fundamental design features, enabling highly complex functionalities. Despite recent advances, the independent control of shape, size, and chemistry of macromolecules remains a synthetic challenge. We report a scalable methodology to produce large, well-defined macromolecules with programmable shape, size, and chemistry that combines reactor engineering principles and controlled polymerizations.

View Article and Find Full Text PDF

Herein, we report a methodology for the synthesis of polyolefin containing block-copolymers using a catalytic postpolymerization modification strategy. The most common polyolefin grades are converted into macroinitiators using a cross-metathesis reaction. These functionalized polyolefins are then used to initiate living: coordinative ring opening polymerization of lactide, anionic ring opening polymerization of epoxide, and radical polymerization of styrene to yield the corresponding block copolymers.

View Article and Find Full Text PDF

The catalytic emulsion polymerization of ethylene has been a long-lasting technical challenge as current techniques still suffer some limitations. Here we report an alternative strategy for the production of semi-crystalline polyethylene latex. Our methodology consists of encapsulating a catalyst precursor within micelles composed of an amphiphilic block copolymer.

View Article and Find Full Text PDF

The rate of living ring-opening metathesis polymerization (ROMP) of N-hexyl-exo-norbornene-5,6-dicarboximide initiated by Grubbs third-generation catalyst precursors [(HIMes)(py)(Cl)Ru═CHPh] and [(HIMes)(3-Br-py)(Cl)Ru═CHPh] is measured to be independent of catalyst concentration. This result led to the development of a rate law describing living ROMP initiated by a Grubbs third-generation catalyst that includes an inverse first-order dependency in pyridine. Additionally, it is demonstrated that one of the two pyridines coordinated to the solid catalyst is fully dissociated in solution.

View Article and Find Full Text PDF

New carbazolide-based iridium pincer complexes ((carb)PNP)Ir(C2H4), 3a, and ((carb)PNP)Ir(H)2, 3b, have been prepared and characterized. The dihydride, 3b, reacts with ethylene to yield the cis-dihydride ethylene complex cis-((carb)PNP)Ir(C2H4)(H)2. Under ethylene this complex reacts slowly at 70 °C to yield ethane and the ethylene complex, 3a.

View Article and Find Full Text PDF

As oil supplies dwindle, there is a growing need to develop new routes to chemical intermediates that utilize alternative feedstocks. We report here a synthesis of para-xylene, one of the highest volume chemicals derived from petroleum, using only ethylene as a feedstock. Ethylene is an attractive alternative feedstock, as it can be derived from renewable biomass resources or harnessed from large domestic shale gas deposits.

View Article and Find Full Text PDF

Conjugated polymers possessing a poly(2,5-dimethylene-2,5-dihydrofuran) backbone were prepared through postpolymerization reaction of styrenic polyketones with bromine in one-pot reactions. The modification is proposed to proceed via condensation of two repeating units to form a fully characterized polymer with a poly(2,5-dimethylenetetrahydrofuran) backbone. Subsequent bromination and elimination of HBr yield a polymer with a fully conjugated carbon backbone.

View Article and Find Full Text PDF

Polymerization of ethylene by complexes [{(P^O)PdMe(L)}] (P^O = κ(2)-(P,O)-2-(2-MeOC(6)H(4))(2)PC(6)H(4)SO(3))) affords homopolyethylene free of any methyl methacrylate (MMA)-derived units, even in the presence of substantial concentrations of MMA. In stoichiometric studies, reactive {(P^O)Pd(Me)L} fragments generated by halide abstraction from [({(P^O)Pd(Me)Cl}μ-Na)(2)] insert MMA in a 1,2- as well as 2,1-mode. The 1,2-insertion product forms a stable five-membered chelate by coordination of the carbonyl group.

View Article and Find Full Text PDF

Complexes [{(PwedgeO)PdMe}(n)] (1(n); PwedgeO = kappa(2)-P,O-Ar(2)PC(6)H(4)SO(2)O with Ar = 2-MeOC(6)H(4)) are a single-component precursor of the (PwedgeO)PdMe fragment devoid of additional coordinating ligands, which also promotes the catalytic oligomerization of acrylates. Exposure of 1(n) to methyl acrylate afforded the two diastereomeric chelate complexes [(PwedgeO)Pd{kappa(2)-C,O-CH(C(O)OMe)CH(2)CH(C(O)OMe)CH(2)CH(3)}] (3-meso and 3-rac) resulting from two consecutive 2,1-insertions of methyl acrylate into the Pd-Me bond with the same or opposite stereochemistry, respectively, in a 3:2 ratio as demonstrated by comprehensive NMR spectroscopic studies and single crystal X-ray diffraction. These six-membered chelate complexes are direct key models for intermediates of acrylate insertion polymerization, and also ethylene-acrylate copolymerization to high acrylate content copolymers.

View Article and Find Full Text PDF

A series of new, highly fluorinated neutral (kappa(2)-N,O) chelated Ni(II) binuclear complexes based on salicylaldimines bridged in p-position of the N-aryl group were prepared. The complexes are single-component catalyst precursors for ethylene polymerization in supercritical carbon dioxide and toluene. Solubility of the catalyst precursors in supercritical carbon dioxide is effected by a large number of up to 18 trifluoromethyl groups per molecule.

View Article and Find Full Text PDF

Multiple insertions of acrylate in copolymerization with ethylene, and an insertion homo-oligomerization of methyl acrylate were observed for the first time. Key to these findings, and to mechanistic insights reported, are labile-substituted complexes as catalyst precursors.

View Article and Find Full Text PDF

The reaction medium controls polymerization with highly active (kappa(2)-P,O)-phosphinesulfonato nickel methyl complexes to afford polyethylenes ranging from low molecular weight (M(n)) branched material to high molecular weight (M(n)) strictly linear polymer.

View Article and Find Full Text PDF