Inhibition of VEGFR signaling is an effective treatment for renal cell carcinoma, but resistance continues to be a major problem. Recently, the sphingosine phosphate (S1P) signaling pathway has been implicated in tumor growth, angiogenesis, and resistance to antiangiogenic therapy. S1P is a bioactive lipid that serves an essential role in developmental and pathologic angiogenesis via activation of the S1P receptor 1 (S1P1).
View Article and Find Full Text PDFNeovascularization in cancer or retinopathy is driven by pathological changes that foster abnormal sprouting of endothelial cells. Mouse genetic studies indicate that the stress-induced small GTPase RhoB is dispensable for normal physiology but required for pathogenic angiogenesis. In diabetic retinopathy, retinopathy of prematurity (ROP) or age-related wet macular degeneration (AMD), progressive pathologic anatomic changes and ischemia foster neovascularization are characterized by abnormal sprouting of endothelial cells.
View Article and Find Full Text PDFTreatment of metastatic gastric cancer typically involves chemotherapy and monoclonal antibodies targeting HER2 (ERBB2) and VEGFR2 (KDR). However, reliable methods to identify patients who would benefit most from a combination of treatment modalities targeting the tumor stroma, including new immunotherapy approaches, are still lacking. Therefore, we integrated a mouse model of stromal activation and gastric cancer genomic information to identify gene expression signatures that may inform treatment strategies.
View Article and Find Full Text PDFVascular tumors are endothelial cell neoplasms whose mechanisms of tumorigenesis are poorly understood. Moreover, current therapies, particularly those for malignant lesions, have little beneficial effect on clinical outcomes. In this study, we show that endothelial activation of the Akt1 kinase is sufficient to drive de novo tumor formation.
View Article and Find Full Text PDFVascular tumors are endothelial cell neoplasms whose cellular and molecular mechanisms, leading to tumor formation, are poorly understood, and current therapies have limited efficacy with significant side effects. We have investigated mechanistic (mammalian) target of rapamycin (mTOR) signaling in benign and malignant vascular tumors, and the effects of mTOR kinase inhibitor as a potential therapy for these lesions. Human vascular tumors (infantile hemangioma and angiosarcoma) were analyzed by immunohistochemical stains and western blot for the phosphorylation of p70 S6-kinase (S6K) and S6 ribosomal protein (S6), which are activated downstream of mTOR complex-1 (mTORC1).
View Article and Find Full Text PDFAnti-VEGF pathway therapies primarily target immature blood vessels in tumors. However, emerging approaches to combine with targeted therapies impacting the later stages of remodeling and vessel maturation are expected to improve clinical efficacy by expanding the target vessel population. The angiopoietin/Tie ligand/receptor system is a prototypic regulator of vessel remodeling and maturation.
View Article and Find Full Text PDFTumors are composed of cancer cells but also a larger number of diverse stromal cells in the tumor microenvironment. Stromal cells provide essential supports to tumor pathophysiology but the distinct characteristics of their signaling networks are not usually considered in developing drugs to target tumors. This oversight potentially confounds proof-of-concept studies and increases drug development risks.
View Article and Find Full Text PDFJunD regulates genes involved in antioxidant defence. We took advantage of the chronic oxidative stress resulting from junD deletion to examine the role of reactive oxygen species (ROS) in tumour development. In a model of mammary carcinogenesis, junD inactivation increased tumour incidence and revealed an associated reactive stroma.
View Article and Find Full Text PDFAlthough B-Raf(V600E) is the most common somatic mutation in papillary thyroid carcinoma (PTC), how it induces tumor aggressiveness is not fully understood. Using gene set enrichment analysis and in vitro and in vivo functional studies, we identified and validated a B-Raf(V600E) gene set signature associated with tumor progression in PTCs. An independent cohort of B-Raf(V600E)-positive PTCs showed significantly higher expression levels of many extracellular matrix genes compared with controls.
View Article and Find Full Text PDFReactive oxygen species (ROS) are implicated in the pathophysiology of various diseases, including cancer. In this study, we show that JunD, a member of the AP-1 family of transcription factors, reduces tumor angiogenesis by limiting Ras-mediated production of ROS. Using junD-deficient cells, we demonstrate that JunD regulates genes involved in antioxidant defense, H2O2 production, and angiogenesis.
View Article and Find Full Text PDF