O-GlcNAc transferase (OGT) coordinates with regulators of transcription, including cyclin-dependent kinase 12 (CDK12), the major transcription elongation kinase. Here, we use inhibitor- and knockdown-based strategies to show that co-targeting of OGT and CDK12 is toxic to prostate cancer cells. OGT catalyzes all nucleocytoplasmic O-GlcNAcylation and due to its essentiality in higher eukaryotes, it is not an ideal drug target.
View Article and Find Full Text PDFUnlabelled: Major advances have been made in the field of precision medicine for treating cancer. However, many open questions remain that need to be answered to realize the goal of matching every patient with cancer to the most efficacious therapy. To facilitate these efforts, we have developed CellMinerCDB: National Center for Advancing Translational Sciences (NCATS; https://discover.
View Article and Find Full Text PDFThe SARS-CoV-2 main protease is among the most attractive targets for the development of therapeutic interventions for COVID-19. Successful candidate agents will not only possess potent on-target activity versus SARS-CoV-2 M but also minimal polypharmacology versus human cysteine proteases. This Viewpoint explores the activity profile of the first approved SARS-CoV-2 M inhibitor (Nirmatrelvir) versus a panel of cysteine proteases and considers the therapeutic implications of the data.
View Article and Find Full Text PDFO-GlcNAc transferase (OGT) is a nutrient-sensitive glycosyltransferase that is overexpressed in prostate cancer, the most common cancer in males. We recently developed a specific and potent inhibitor targeting this enzyme, and here, we report a synthetic lethality screen using this compound. Our screen identified pan-cyclin-dependent kinase (CDK) inhibitor AT7519 as lethal in combination with OGT inhibition.
View Article and Find Full Text PDFDespite a growing body of knowledge about the genomic landscape of Ewing sarcoma, translation of basic discoveries into targeted therapies and significant clinical gains has remained elusive. Recent insights have revealed that the oncogenic transcription factor EWS-FLI1 can impact Ewing sarcoma cellular metabolism, regulating expression of 3-phosphoglycerate dehydrogenase (PHGDH), the first enzyme in serine synthesis. Here, we have examined the importance of serine metabolism in Ewing sarcoma tumorigenesis and evaluated the therapeutic potential of targeting serine metabolism in preclinical models of Ewing sarcoma.
View Article and Find Full Text PDFIntron detention in precursor RNAs serves to regulate expression of a substantial fraction of genes in eukaryotic genomes. How detained intron (DI) splicing is controlled is poorly understood. Here, we show that a ubiquitous post-translational modification called O-GlcNAc, which is thought to integrate signaling pathways as nutrient conditions fluctuate, controls detained intron splicing.
View Article and Find Full Text PDFCD47 is an immune checkpoint protein that downregulates both the innate and adaptive anti-tumor immune response via its counter receptor SIRPα. Biologics, including humanized CD47 monoclonal antibodies and decoy SIRPα receptors, that block the SIRPα-CD47 interaction, are currently being developed as cancer immunotherapy agents. However, adverse side effects and limited penetration of tumor tissue associated with their structure and large size may impede their clinical application.
View Article and Find Full Text PDFDiffuse midline gliomas (DMGs) are universally lethal malignancies occurring chiefly during childhood and involving midline structures of the central nervous system, including thalamus, pons, and spinal cord. These molecularly related cancers are characterized by high prevalence of the histone H3K27M mutation. In search of effective therapeutic options, we examined multiple DMG cultures in sequential quantitative high-throughput screens (HTS) of 2706 approved and investigational drugs.
View Article and Find Full Text PDFReversible glycosylation of nuclear and cytoplasmic proteins is an important regulatory mechanism across metazoans. One enzyme, O-linked N-acetylglucosamine transferase (OGT), is responsible for all nucleocytoplasmic glycosylation and there is a well-known need for potent, cell-permeable inhibitors to interrogate OGT function. Here we report the structure-based evolution of OGT inhibitors culminating in compounds with low nanomolar inhibitory potency and on-target cellular activity.
View Article and Find Full Text PDFHigh-grade gliomas (HGG) are a devastating group of cancers, and represent the leading cause of brain tumour-related death in both children and adults. Therapies aimed at mechanisms intrinsic to glioma cells have translated to only limited success; effective therapeutic strategies will need also to target elements of the tumour microenvironment that promote glioma progression. Neuronal activity promotes the growth of a range of molecularly and clinically distinct HGG types, including adult and paediatric glioblastoma (GBM), anaplastic oligodendroglioma, and diffuse intrinsic pontine glioma (DIPG).
View Article and Find Full Text PDFAlthough many cancers are showing remarkable responses to targeted therapies, pediatric sarcomas, including Ewing sarcoma, remain recalcitrant. To broaden the therapeutic landscape, we explored the response of Ewing sarcoma cell lines against a large collection of investigational and approved drugs to identify candidate combinations. Drugs displaying activity as single agents were evaluated in combinatorial (matrix) format to identify highly active, synergistic drug combinations, and combinations were subsequently validated in multiple cell lines using various agents from each class.
View Article and Find Full Text PDFMetabolic networks are highly connected and complex, but a single enzyme, O-GlcNAc transferase (OGT) can sense the availability of metabolites and also modify target proteins. We show that inhibition of OGT activity inhibits the proliferation of prostate cancer cells, leads to sustained loss of c-MYC and suppresses the expression of CDK1, elevated expression of which predicts prostate cancer recurrence (p=0.00179).
View Article and Find Full Text PDFAdult T-cell leukemia (ATL) develops in individuals infected with human T-cell lymphotropic virus-1 (HTLV-1). Presently there is no curative therapy for ATL. HTLV-1-encoded protein Tax (transactivator from the X-gene region) up-regulates Bcl-xL (B-cell lymphoma-extra large) expression and activates interleukin-2 (IL-2), IL-9, and IL-15 autocrine/paracrine systems, resulting in amplified JAK/STAT signaling.
View Article and Find Full Text PDFO-GlcNAc transferase (OGT) is an essential mammalian enzyme that regulates numerous cellular processes through the attachment of O-linked N-acetylglucosamine (O-GlcNAc) residues to nuclear and cytoplasmic proteins. Its targets include kinases, phosphatases, transcription factors, histones, and many other intracellular proteins. The biology of O-GlcNAc modification is still not well understood, and cell-permeable inhibitors of OGT are needed both as research tools and for validating OGT as a therapeutic target.
View Article and Find Full Text PDFThe clinical development of drug combinations is typically achieved through trial-and-error or via insight gained through a detailed molecular understanding of dysregulated signaling pathways in a specific cancer type. Unbiased small-molecule combination (matrix) screening represents a high-throughput means to explore hundreds and even thousands of drug-drug pairs for potential investigation and translation. Here, we describe a high-throughput screening platform capable of testing compounds in pairwise matrix blocks for the rapid and systematic identification of synergistic, additive, and antagonistic drug combinations.
View Article and Find Full Text PDFThe structure-activity relationship (SAR) study of two chemotypes identified as inhibitors of the human NAD(+)-dependent 15-hydroxyprostaglandin dehydrogenase (HPGD, 15-PGDH) was conducted. Top compounds from both series displayed potent inhibition (IC50 <50 nM), demonstrate excellent selectivity towards HPGD and potently induce PGE2 production in A549 lung cancer and LNCaP prostate cancer cells.
View Article and Find Full Text PDFThe importance of the trifluoromethyl group in the polypharmacological profile of nilotinib was investigated. Molecular editing of nilotinib led to the design, synthesis and biological evaluation of analogues where the trifluoromethyl group was replaced by a proton, fluorine and a methyl group. While these analogues were less active than nilotinib toward Abl, their activity toward Kit was comparable, with the monofluorinated analogue being the most active.
View Article and Find Full Text PDFAnalogues of mitoQ and idebenone were synthesized to define the structural elements that support oxygen consumption in the mitochondrial respiratory chain. Eight analogues were prepared and fully characterized, then evaluated for their ability to support oxygen consumption in the mitochondrial respiratory chain. While oxygen consumption was strongly inhibited by mitoQ analogues 2-4 in a chain length-dependent manner, modification of idebenone by replacement of the quinone methoxy groups by methyl groups (analogues 6-8) reduced, but did not eliminate, oxygen consumption.
View Article and Find Full Text PDFTributyltin hydride-mediated cyclizations of 1-nitro-2-acetoxy-5-hexenes 7a-g having multiple substitutions on carbons 1 and 6 result in 2,3-substituted-1-acetoxycyclopentanes 1a-g. The substrates were prepared by nitroaldol reactions of silyloxyaldehydes followed by acetylation, desilylation, and oxidation to the acetoxynitroaldehydes 6a-e. Wittig olefination of aldehydes 6a-e then afforded substrates for the radical cyclizations.
View Article and Find Full Text PDF[reaction: see text] A synthesis of the glutarimide-derived metabolite of thalidomide, 5'-hydroxythalidomide (2), is described. The synthesis employed the lactone derivative of N-benzyloxycarbonyl (CBZ)-protected 4-hydroxyglutamic acid 12, which is prepared by a de novo route from diethyl acetamidomalonate. The reaction of 12 with 4-methoxybenzylamine gave the corresponding isoglutamine, which then provided the key CBZ-protected N-PMB-glutarimide 14 after dehydration.
View Article and Find Full Text PDF