The BigDFT project was started in 2005 with the aim of testing the advantages of using a Daubechies wavelet basis set for Kohn-Sham (KS) density functional theory (DFT) with pseudopotentials. This project led to the creation of the BigDFT code, which employs a computational approach with optimal features of flexibility, performance, and precision of the results. In particular, the employed formalism has enabled the implementation of an algorithm able to tackle DFT calculations of large systems, up to many thousands of atoms, with a computational effort that scales linearly with the number of atoms.
View Article and Find Full Text PDFFirst-principles electronic structure calculations are now accessible to a very large community of users across many disciplines, thanks to many successful software packages, some of which are described in this special issue. The traditional coding paradigm for such packages is monolithic, i.e.
View Article and Find Full Text PDFabinit is probably the first electronic-structure package to have been released under an open-source license about 20 years ago. It implements density functional theory, density-functional perturbation theory (DFPT), many-body perturbation theory (GW approximation and Bethe-Salpeter equation), and more specific or advanced formalisms, such as dynamical mean-field theory (DMFT) and the "temperature-dependent effective potential" approach for anharmonic effects. Relying on planewaves for the representation of wavefunctions, density, and other space-dependent quantities, with pseudopotentials or projector-augmented waves (PAWs), it is well suited for the study of periodic materials, although nanostructures and molecules can be treated with the supercell technique.
View Article and Find Full Text PDFEfficient, mercury-free deep ultraviolet (DUV) light-emitting diodes (LEDs) are becoming a crucial challenge for many applications such as water purification. For decades, the poor p-type doping and difficult current injection of Al-rich AlGaN-based DUV LEDs have limited their efficiency and therefore their use. We present here the significant increase in AlN p-doping thanks to Mg/In codoping, which leads to an order of magnitude higher Mg solubility limit in AlN nanowires (NWs).
View Article and Find Full Text PDFWe present CheSS, the "Chebyshev Sparse Solvers" library, which has been designed to solve typical problems arising in large-scale electronic structure calculations using localized basis sets. The library is based on a flexible and efficient expansion in terms of Chebyshev polynomials and presently features the calculation of the density matrix, the calculation of matrix powers for arbitrary powers, and the extraction of eigenvalues in a selected interval. CheSS is able to exploit the sparsity of the matrices and scales linearly with respect to the number of nonzero entries, making it well-suited for large-scale calculations.
View Article and Find Full Text PDFThe widespread popularity of density functional theory has given rise to an extensive range of dedicated codes for predicting molecular and crystalline properties. However, each code implements the formalism in a different way, raising questions about the reproducibility of such predictions. We report the results of a community-wide effort that compared 15 solid-state codes, using 40 different potentials or basis set types, to assess the quality of the Perdew-Burke-Ernzerhof equations of state for 71 elemental crystals.
View Article and Find Full Text PDFDensity functional theory calculations are computationally extremely expensive for systems containing many atoms due to their intrinsic cubic scaling. This fact has led to the development of so-called linear scaling algorithms during the last few decades. In this way it becomes possible to perform ab initio calculations for several tens of thousands of atoms within reasonable walltimes.
View Article and Find Full Text PDFWe demonstrate that Daubechies wavelets can be used to construct a minimal set of optimized localized adaptively contracted basis functions in which the Kohn-Sham orbitals can be represented with an arbitrarily high, controllable precision. Ground state energies and the forces acting on the ions can be calculated in this basis with the same accuracy as if they were calculated directly in a Daubechies wavelets basis, provided that the amplitude of these adaptively contracted basis functions is sufficiently small on the surface of the localization region, which is guaranteed by the optimization procedure described in this work. This approach reduces the computational costs of density functional theory calculations, and can be combined with sparse matrix algebra to obtain linear scaling with respect to the number of electrons in the system.
View Article and Find Full Text PDFThrough a systematic structural search we found an allotrope of carbon with Cmmm symmetry which we predict to be more stable than graphite for pressures above 10 GPa. This material, which we refer to as Z-carbon, is formed by pure sp(3) bonds and it provides an explanation to several features in experimental x-ray diffraction and Raman spectra of graphite under pressure. The transition from graphite to Z-carbon can occur through simple sliding and buckling of graphene sheets.
View Article and Find Full Text PDFUnbiased open-ended methods for finding transition states are powerful tools to understand diffusion and relaxation mechanisms associated with defect diffusion, growth processes, and catalysis. They have been little used, however, in conjunction with ab initio packages as these algorithms demanded large computational effort to generate even a single event. Here, we revisit the activation-relaxation technique (ART nouveau) and introduce a two-step convergence to the saddle point, combining the previously used Lanczós algorithm with the direct inversion in interactive subspace scheme.
View Article and Find Full Text PDFThe intriguing possibility of frictionless gliding of one solid surface on another has been predicted for certain incommensurate interfaces in crystals, based on Aubry's solution to the Frenkel-Kontorova model of a harmonic chain in a periodic potential field. Here we test this prediction for grain boundaries by comparing atomistic simulations with direct experimental observations on the structure and load-deformation behavior of gold nanopillars containing a root-two incommensurate grain boundary. The simulations show supergliding at this boundary limited by finite-size effects which cause edges to act as defects of the incommensurate structure.
View Article and Find Full Text PDFDaubechies wavelets are a powerful systematic basis set for electronic structure calculations because they are orthogonal and localized both in real and Fourier space. We describe in detail how this basis set can be used to obtain a highly efficient and accurate method for density functional electronic structure calculations. An implementation of this method is available in the ABINIT free software package.
View Article and Find Full Text PDFPhys Rev Lett
September 2006
In this Letter we report kinetic lattice Monte Carlo simulations of vacancy-assisted diffusion in silicon. We show that the observed temperature dependence for vacancy migration energy is explained by the existence of three diffusion regimes for divacancies. This characteristic has been rationalized with an analytical model.
View Article and Find Full Text PDF