Perfume encapsulates are widely used in commercial products to control the kinetic release of odorant molecules, increase storage stability and/or improve deposition on different substrates. In most of the cases, they consist of core-shell polymeric microcapsules that contain fragrance molecules. A current challenge is to design and produce polymeric materials for encapsulation that are both resistant and non-persistent.
View Article and Find Full Text PDFThe molecular structure of a crosslinked nitrogen-rich resin made from melamine, urea, and aldehydes, and of microcapsules made from the reactive resin with multiple polymeric components in aqueous dispersion, has been analyzed by C, C{H}, H-C, H, C{N}, and N solid-state NMR without isotopic enrichment. Quantitative C NMR spectra of the microcapsules and three precursor materials enable determination of the fractions of different components. Spectral editing of non-protonated carbons by recoupled dipolar dephasing, of CH by dipolar DEPT, and of C-N by C{N} SPIDER resolves peak overlap and helps with peak assignment.
View Article and Find Full Text PDFThe deposition of fragrance delivery systems onto human hair from a shampoo formulation is a challenging task, as the primary function of shampoo is to cleanse the hair by removing primarily hydrophobic moieties. In this work, to tackle this challenge, phage-display-identified peptides that can bind to human hair under shampooing conditions are first identified and subsequently used to enhance the deposition of model fragrance delivery systems. These delivery systems are based on either poly(N-(2-hydroxypropyl)methacrylamide) (PHPMA) copolymers as a representative for polymeric profragrances or polyurethane/polyurea-type core-shell microcapsules as a model physical fragrance carrier.
View Article and Find Full Text PDFThe encapsulation of photolabile 2-oxoacetates in core-shell microcapsules allows the light-induced, controlled release of bioactive compounds. On irradiation with UVA light these compounds degrade to generate an overpressure of gas inside the capsules, which expands or breaks the capsule wall. Headspace measurements confirmed the light-induced formation of CO and CO2 and the successful release of the bioactive compound, while optical microscopy demonstrated the formation of gas bubbles, the cleavage of the capsule wall, and the leakage of the oil phase out of the capsule.
View Article and Find Full Text PDFA series of thioether profragrances was prepared by reaction of different sulfanylalkanoates with δ-damascone and tested for their release efficiencies in a fabric-softener and an all-purpose cleaner application. Dynamic headspace analysis on dry cotton and on a ceramic plate revealed that the performance of the different precursors depended on the structure, but also on the particular conditions encountered in different applications. Moreover, profragrances derived from other α,β-unsaturated fragrance aldehydes and ketones were synthesized analogously and evaluated using the same test protocol.
View Article and Find Full Text PDFThis work aims at establishing a link between process conditions and resulting micromechanical properties for aminoplast core/shell microcapsules. The investigated capsules were produced by the in situ polymerization of melamine formaldehyde resins, which represents a widely used and industrially relevant approach in the field of microencapsulation. Within our study, we present a quantitative morphological analysis of the capsules' size and shell thickness.
View Article and Find Full Text PDFPoly(maleic acid monoester)-based β-mercapto ketones were synthesized and investigated as potential delivery systems for the controlled release of bioactive, volatile, α,β-unsaturated enones (such as damascones and damascenones) by retro 1,4-addition. The bioconjugates were prepared in a one-pot synthesis using 2-mercaptoethanol as a linker. The thiol group of 2-mercaptoethanol adds to the double bond of the enone to form a β-mercapto ketone, which was then grafted via nucleophilic ring-opening of the remaining alcohol function onto a series of alternating copolymers of maleic anhydride and 1-octadecene, ethylene, isobutylene, and methyl vinyl ether.
View Article and Find Full Text PDFActive materials that can solubilize in different compartments of a sample show release properties which might be of interest in some applications where a delayed release of solutes for instance is required. We studied perfume solutes in compartments of Pluronic block copolymers of different compositions and molecular weights over a range of ethanol-water mixtures. Phase diagrams were constructed to identify and map micellar phases, then dynamic light scattering was used to characterize the solute-swollen micelles; NMR provided with the partition of solutes between solvent and micelles, and equilibrium constants K(c) were estimated using headspace analysis.
View Article and Find Full Text PDFThis contribution presents an application of electronic circular dichroism (ECD) and vibrational circular dichroism (VCD) to study the molecular and supramolecular chirality in assemblies of gemini-tartrate amphiphiles. Nonchiral dicationic n-2-n amphiphiles (n = 14-20) can self-organize into right- or left-handed structures upon interacting with chiral tartrate counterions. Micellar solutions can also be obtained for shorter alkyl chains (n = 12).
View Article and Find Full Text PDFAmphiphile supramolecular assemblies result from the cooperative effects of multiple weak interactions between a large number of subcomponents. As a result, prediction of and control over the morphologies of such assemblies remains difficult to achieve. Here, we described the fine-tuning of the shape, size, and morphology transitions of twisted and helical membranes formed by non-chiral dicationic n-2-n gemini amphiphiles complexed with chiral tartrate anions.
View Article and Find Full Text PDFIn membranes, the chirality of the amphiphile constituents is sometimes expressed at a supramolecular scale of nanometers or micrometers. We have recently reported that membranes of nonchiral dicationic n-2-n amphiphiles can also be chirally twisted upon interacting with chiral tartrate counterions. Here, we demonstrate that the mechanism of the chiral induction by counterions involves specific anion-cation recognition and the induction of conformationally labile chirality in the cations.
View Article and Find Full Text PDFSilica fibrils with a novel double stranded helical structure are prepared by sol-gel transcription of twisted bilayer ribbons formed by cationic gemini surfactants.
View Article and Find Full Text PDF